Comparison of the Mutagenic Responses of Lung-Derived and Skin-Derived Human Diploid Fibroblast Populations

  • Lois Jacobs
  • James A. Marx
  • Christian L. Bean


We have established a series of pairs of lung- and skin-derived fibroblast cultures from human embryonic tissues. Each pair of skin and lung populations was established simultaneously from the same individual using carefully controlled, identical conditions. These paired populations provide a unique opportunity to study differences between normal diploid fibroblast populations from skin and lung without the confusion of genetic differences between donors. They also permit the study of differences among individuals without the confusion of variables such as different ages of donors, different biopsy sites, different conditions for initiating cell populations, and different cell population doubling levels. Our goals have been (1) to analyze the variance in cell killing and mutability among normal individuals in the human population and (2) to analyze the variance in mutability between fibroblast cultures derived from two different human tissues.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. F. Barile and R. A. Del Guidice, Isolation of mycoplasmas and their rapid identification by plate epi-immunoflourescence, in: Pathogenic Mycoplasmas, A CIBA Foundation Symposium, pp. 165–186, Elsevier, Amsterdam (1972).CrossRefGoogle Scholar
  2. 2.
    P. J. Benke and N. Herrick, Azaguanine-resistance as a manifestation of a new form of metabolic overproduction of uric acid, Am. J. Med. 52, 547–555 (1972).CrossRefGoogle Scholar
  3. 3.
    M. Buchwald and C. J. Ingles, Human diploid fibroblast mutants with altered RNA polymerase II, Somat. Cell Genet. 2, 225–233 (1976).CrossRefGoogle Scholar
  4. 4.
    E. H. Y. Chu and H. V. Mailing, Mammalian cell genetics, II. Chemical induction of specific locus mutations in Chinese hamster cells in vitro, Proc. Natl. Acad. Sei. USA 61, 1306–1312 (1968).CrossRefGoogle Scholar
  5. 5.
    J. E. Cleaver, DNA repair with purines and pyrimidines in radiation- and carcinogen- damaged normal and xeroderma pigmentosum human cells, Cancer Res. 33, 362–369 (1973).Google Scholar
  6. 6.
    I. W. Dawes and B. L. A. Garter, Nitrosoguanidine mutagenesis during nuclear and mitochondrial gene replication, Nature 250, 709–712 (1974).CrossRefGoogle Scholar
  7. 7.
    R. DeMars, Resistance of cultured human fibroblasts and other cells to purine analogues in relation to mutagenesis detection, Mutat. Res. 24, 335–364 (1974).CrossRefGoogle Scholar
  8. 8.
    R. DeMars and K. R. Held, The spontaneous azaguanine-resistant mutants of diploid human fibroblasts, Humangenetik 16, 87–110 (1972).CrossRefGoogle Scholar
  9. 9.
    R. DeMars and J. L. Jackson, Mutagenicity detection with human cells, J. Environ. Pathol. Toxicol. 1, 55–77 (1977).Google Scholar
  10. 10.
    R. DeMars, J. L. Jackson, and D. Biehrke-Nelson, Mutation rates of human somatic cells cultivated in vitro, in: Population and Biological Aspects of Human Mutation (E. B. Hook and I. H. Porter, eds.), pp. 209–234, Academic Press, New York (1981).Google Scholar
  11. 11.
    International Union of Biochemistry, Enzyme Nomenclature, Elsevier North-Holland Biomedical Press, Amsterdam (1965).Google Scholar
  12. 12.
    J. S. Felix, Genetic Studies on Cultured Cells Bearing the Lesch-Nyhan Mutation (Hypoxanthine-guanine Phosphoribosyltransferase Deficiency) with Attempts to De- repress the Inactive X Chromosome in Heterozygous Female Cells, Thesis, University of Wisconsin, (1971).Google Scholar
  13. 13.
    F. D. Gillin, D. J. Roufa, A. L. Beaudet, and C. T. Caskey, 8-Azaguanine resistance in mammalian cells I. Hypoxanthine-guanine phosphoribosyltransferase, Genetics 72, 239–252 (1972).Google Scholar
  14. 14.
    R. G. Ham and T. T. Puck, Quantitative colonial growth of isolated mammalian cells, in: Methods in Enzymology (S. P. Colowick and N. O. Kaplan, eds.), Vol. 5, pp. 90–119, Academic Press, New York (1962).Google Scholar
  15. 15.
    E. Huberman and L. Sachs, Cell–mediated mutagenesis of mammalian cells with chemical carcinogens, Int. J. Cancer 13, 326–333 (1974).CrossRefGoogle Scholar
  16. 16.
    L. Jacobs and C. L. Bean, Characterization of genetically-identical pairs of lung- and skin-derived human diploid fibroblast populations: Lifespans, cloning ability, growth rates, and response to hydrocortizone, in preparation (1984).Google Scholar
  17. 17.
    L. Jacobs and R. DeMars, Chemical mutagenesis with diploid human fibroblasts, in: Handbook on Mutagenicity Test Procedures (B. Kilbey et al., eds.), pp. 193–220, Elsevier North-Holland Biomedical Press, Amsterdam (1977).Google Scholar
  18. 18.
    L. Jacobs and R. DeMars, Quantification of chemical mutagenesis in diploid human fibroblasts: Induction of azaguanine–resistant mutants by N-methyl-N’-nitro-N-nitro- soguanidine (MNNG), Mutat. Res 53., 29–53 (1978).CrossRefGoogle Scholar
  19. 19.
    L. Jacobs and R. DeMars, Chemical mutagenesis with diploid human fibroblasts, in: Handbook on Mutagenicity Test Procedures, 2nd ed. (B. Kilbey et al., eds.), Elsevier North- Holland Biomedical Press, Amsterdam (1984).Google Scholar
  20. 20.
    L. Jacobs and J. A. Marx, Comparisons of the mutagenic responses of genetically identical pairs of lung- and skin-derived human diploid fibroblast populations, in preparation (1984).Google Scholar
  21. 21.
    L. Jacobs, C. L. Bean, and J. A. Marx, Optimal phenotypic expression times for HPRT mutants induced in foreskin-, skin-, and lung-derived human diploid fibroblasts, Environ. Mutagen. 5: 717–731 (1983).CrossRefGoogle Scholar
  22. 22.
    F. T. Kao and T. T. Puck, Genetics of somatic mammalian cells IX, Quantitation of mutagenesis by physical and chemical agents, J. Cell. Physiol. 74, 245–258 (1969).CrossRefGoogle Scholar
  23. 23.
    W. N. Kelley, M. L. Greene, F. M. Rosenbloom, J. E. Henderson, and J. E. Miller, Review: HG-PRT-deficiency in gout, Ann. Int. Med. 10, 155–206 (1969).CrossRefGoogle Scholar
  24. 24.
    K. Kogure, H. Sasadaira, T. Kawachi, Y. Shimosato, A. Tokunaga, S. Fugimura, and T. Sugimura, Further studies on induction of stomach cancer in hamsters by N-methyl-N’-nitro-N-nitrosoguanidine, Br. J. Cancer 29, 132–142 (1974).CrossRefGoogle Scholar
  25. 25.
    P. D. Lawley and C. J. Thatcher, Methylation of deoxyribonucleic acid in cultured mammalian cells by N-methyl-N’-nitro-N-nitrosoguanidine. The influence of cellular thiol concentrations on the extent of methylation and the 6-oxygen atom as a site of methylation, Biochem. J. 116, 693–707 (1970).Google Scholar
  26. 26.
    M. Lesch and W. Nyhan, A familial disorder of uric acid metabolism and central nervous system function, Am. J. Med. 36, 561–570 (1964).CrossRefGoogle Scholar
  27. 27.
    H. V. Mailing and F. J. de Serres, Mutagenicity of alkylating carcinogens, Ann. NY Acad. Sci. 163, 788–800 (1969).CrossRefGoogle Scholar
  28. 28.
    H. V. Mailing and F. J. de Serres, Genetic effects of N-methyl-N’-nitro-N-nitrosoguanidine in Neurospora crassa, Mol. Gen. Genet 106, 195–207 (1970).CrossRefGoogle Scholar
  29. 29.
    J. D. Mandell and J. Greenberg, A new chemical mutagen for bacteria, 1-methyl-3-nitro-1-nitrosoguanidine, Biochem. Biophys. Res. Commun. 3, 575–577 (1960).CrossRefGoogle Scholar
  30. 30.
    R. M. Mankovitz, M. Buchwald, and R. M. Baker, Isolation of ouabain-resistant human diploid fibroblasts, Cell 3, 221–226 (1974).CrossRefGoogle Scholar
  31. 31.
    G. McGarrity, Detection of mycoplasmas in cell culture, Tissue Culture Association Manual 1, 113–116 (1975).CrossRefGoogle Scholar
  32. 32.
    A. J. Muller and T. Gichner, Mutagenic activity of 1-methyl-3-nitro-1-nitrosoguanidine on Arabdopsis, Nature 201, 1149–1150 (1964).CrossRefGoogle Scholar
  33. 33.
    W. L. Nyhan, J. Pesek, L. Sweetman, D. G. Carpenter, and C. H. Garter, Genetics of an X-linked disorder of uric acid metabolism and cerebral function, Pediatr. Res. 1, 5–13 (1967).CrossRefGoogle Scholar
  34. 34.
    S. H. Orkin and J. W. Littlefield, Nitrosoguanidine mutagenesis in synchronized hamster cells, Exp. Cell Res. 66, 69–74 (1971).CrossRefGoogle Scholar
  35. 35.
    B. W. Penman and W. G. Thilly, Concentration-dependent mutation of human lymphoblasts by methylnitro-nitrosoguanidine: The importance of phenotypic lag, Somat. Cell Genet. 2, 325–330 (1976).CrossRefGoogle Scholar
  36. 36.
    C. A. Reznikoff and R. DeMars, In vitro chemical mutagenesis and viral transformation of a human endothelial cell strain, Cancer Res. 41, 1114–1126 (1981).Google Scholar
  37. 37.
    T. Saito, K. Inokuchi, S. Takayama, and T. Sugimura, Sequential morphological changes in N-methyl-N’-nitro-N-nitrosoguanidine carcinogenesis in the glandular stomach of rats, J. Natl. Cancer Inst. 44, 769–783 (1970).Google Scholar
  38. 38.
    R. Schoental, Carcinogenic activity of N-methyl-N’-nitro-N-nitrosoguanidine, Nature 209, 726–727 (1966).CrossRefGoogle Scholar
  39. 39.
    M. Seabright, A rapid banding technique for human chromosomes, Lancet 2, 971–972 (1971).CrossRefGoogle Scholar
  40. 40.
    Y. Shimosato, N. Tanaka, K. Kogure, S. Fugimura, T. Kauachi, and T. Sugimura, Histopathology of tumors of canine alimentary tract, with particular reference to gastric carcinomas, J. Natl. Cancer Inst. 47, 1053–1070 (1971).Google Scholar
  41. 41.
    C. Steglich and R. DeMars, Mutations causing deficiency of APRT in fibroblasts cultured from humans heterozygous for mutant APRT alleles, Somat. Cell Genet. 8, 115–141 (1982).CrossRefGoogle Scholar
  42. 42.
    T. Sugimura and S. Fujimura, Tumour production in glandular stomach of rat by N-methyl-N’-nitro-N-nitrosoguanidine, Nature 216, 943–944 (1967).CrossRefGoogle Scholar
  43. 43.
    W. Szybalski, E. H. Szybalska, and G. Ragni, Genetic studies in human cell lines, Natl. Cancer Inst. Monogr. 7, 75–89 (1962).Google Scholar
  44. 44.
    J. J. Yunis and M. E. Chandler, High resolution chromosome analysis in clinical medicine, Prog. Clin. Pathol. 7, 267–288 (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Lois Jacobs
    • 1
  • James A. Marx
    • 1
  • Christian L. Bean
    • 1
  1. 1.Department of Medical GeneticsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations