The Grasshopper Neuroblast Short-Term Assay for Evaluating the Effects of Environmental Chemicals on Chromosomes and Cell Kinetics

  • Mary Esther Gaulden
  • Jan C. Liang
  • Martha J. Ferguson


The grasshopper neuroblast (GHNb) is a newcomer to the library of tests available for evaluating the mutagenicity of environmental chemicals. Most of the current tests have been in use since the beginning of the present era of active research on the identification of environmental mutagens and carcinogens, which began to attain international momentum in the late 1960s.(28,56) Why, then, did we recently develop another assay? First, the neuroblast (Nb) of the grasshopper Chortophaga viridifasciata (De Geer) has been shown to be very sensitive to X rays (the effects of doses as low as 1 rad on chromosome breakage and on mitotic rate can be detected(42,43)), so we reasoned that it might also be very sensitive to chemical mutagens. Second, the fact that the spontaneous chromosome aberration frequency in the GHNb is zero means that significant data on mutagens can be obtained with a minimum number of cells. Third, the GHNb has a short cell cycle(44) with a number of well-defined phases, and thus, much information about the effects of agents on cell progression can be obtained. This aspect of environmental mutagen action has received relatively little attention and is of considerable relevance to teratogenesis.(36) The short cell cycle (Chortophaga, 4 hr; Melanoplus sanguinipes, 2 hr, 38°C) is also advantageous for testing chemicals with short half-lives.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. O. Albrecht, Facteurs internes et fluctuations des effectifs chez Nomadacris septemfasciata (Serv.), Bull. Biol. Fr. Belg. 93, 414–461 (1959).Google Scholar
  2. 2.
    F. O. Albrecht, M. Verdier, and R. E. Blackith, Détermination de la fertilité par l’effet de group chez le criquet migrateur (Locusta migratoria migratorioides R. and F.), Bull. Biol. Fr. Belg. 92, 350–427 (1958).Google Scholar
  3. 3.
    D. T. Anderson, The development of hemimetabolous insects, in: Developmental Systems: Insects (S. J. Counce and C. H. Waddington, eds.), Vol. 1, pp. 95–163, Academic Press, New York (1972).Google Scholar
  4. 4.
    L. K. Anderson, S. M. Stack, and J. B. Mitchell, An investigation of the basis of a current hypothesis for the lack of G-banding in plant chromosomes, Exp. Cell Res. 138, 433–436 (1982).Google Scholar
  5. 5.
    W. Au, M. A. Butler, S. E. Bloom, and T. S. Matney, Further study of the genetic toxicity of gentian violet, Mutat. Res. 66, 103–112 (1979).Google Scholar
  6. 6.
    C. Auerbach, The effects of six years of mutagen testing on our attitude to the problems posed by it, Mutat. Res. 33, 3–10 (1975).Google Scholar
  7. 7.
    V. Baden, Embryology of the nervous system in the grasshopper, Melanoplus differentialis (Acrididae; Orthoptera), J. Morphol. 60, 159–188 (1936).Google Scholar
  8. 8.
    H. Bartsch, T. Kuroki, M. Roberfroid, and C. Malaveille, Metabolic activation systems in vitro for carcinogen/mutagen screening tests, in: Chemical Mutagens. Principles and Methods for Their Detection, Vol. 7 (F. J. de Serres and A. Hollaender, eds.), pp. 95–161, Springer Science+Business Media New York (1981).Google Scholar
  9. 9.
    C. M. Bate, Embryogenesis of an insect nervous system. I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria, J. Embryol. Exp. Morphol. 35, 107– 123 (1976).Google Scholar
  10. 10.
    D. Bentley, H. Keshishian, M. Shankland, and A. Toroian-Raymond, Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens, J. Embryol. Exp. Morphol. 54, 47–74 (1979).Google Scholar
  11. 11.
    C. A. H. Bigger, J. E. Tomaszewski, A. Dipple, and R. S. Lake, Limitations of metabolic activation systems used with in vitro tests for carcinogens, Science 209, 503–505 (1980).Google Scholar
  12. 12.
    J. G. Carlson, Mitotic behavior of induced chromosomal fragments lacking spindle attachments in the neuroblasts of the grasshopper, Proc. Natl. Acad. Sci. USA 24, 500–507 (1938).Google Scholar
  13. 13.
    J. G. Carlson, An analysis of X-ray induced single breaks in neuroblast chromosomes of the grasshopper (Chortophaga viridifasciata), Proc. Natl. Acad. Sci. USA 27, 42–47 (1941).Google Scholar
  14. 14.
    J. G. Carlson, Protoplasmic viscosity changes in different regions of the grasshopper neuroblast during mitosis, Biol. Bull. 90, 109–121 (1946).Google Scholar
  15. 15.
    J. G. Carlson, Microdissection studies of the dividing neuroblast of the grasshopper, Chortophaga viridifasciata (De Geer), Chromosoma 5, 199–220 (1952).Google Scholar
  16. 16.
    J. G. Carlson, The grasshopper neuroblast culture technique and its value in radiobiological studies, Ann. NY Acad. Sci. 95(2), 932–941 (1961).Google Scholar
  17. 17.
    J. G. Carlson, A detailed analysis of X-ray-induced prophase delay and reversion of grasshopper neuroblasts in culture, Radiat. Res. 37, 1–14 (1969).Google Scholar
  18. 18.
    J. G. Carlson, X-ray-induced prophase delay and reversion of selected cells in certain avian and mammalian tissues in culture, Radiat. Res. 37, 15–30 (1969).Google Scholar
  19. 19.
    J. G. Carlson, Anaphase chromosome movement in the unequally dividing grasshopper neuroblast and its relation to anaphases in other cells, Chromosoma 64, 191–206 (1977).Google Scholar
  20. 20.
    J. G. Carlson and M. E. Gaulden, Grasshopper neuroblast techniques, Meth. Cell Physiol. 1, 229–276 (1964).Google Scholar
  21. 21.
    J. G. Carlson and A. Hollaender, Mitotic effects of ultraviolet radiation of the 2250 A region, with special reference to the spindle and cleavage, J. Cell. Comp. Physiol. 31, 149–174 (1948).Google Scholar
  22. 22.
    J. G Carlson and R. D. McMaster, Nucleolar changes induced in the grasshopper neuroblast by different wavelengths of ultraviolet radiation and their capacity for photorecovery, Exp. Cell Res. 2, 434–444 (1951).Google Scholar
  23. 23.
    E. E. Carothers, Notes on the taxonomy, development and life history of certain Acrididae (Orthoptera), Trans. Am. Entomol. Soc. 49, 7–24 (1923).Google Scholar
  24. 24.
    T. T. Chen and G. R. Wyatt, Juvenile hormone control of vitellogenin synthesis in Locusta migratoria, in: International Conference on Regulation of Insect Development and Behavior (Sci. Pap. Inst. Organ. Phys. Chem• Wroclaw Tech Univ., No. 22), Part II, pp. 535–566, Wroclaw, Poland (1981).Google Scholar
  25. 25.
    A. Chrominski, S. N. Visscher, and R. Jurenka, Exposure to ethylene changes nymphal growth rate and female longevity in the grasshopper Melanoplus sanguinipes, Naturwissenschaften 69, 45–46 (1982).Google Scholar
  26. 26.
    Committee 17, Environmental mutagenic hazards, Science 187, 503–514 (1975).Google Scholar
  27. 27.
    B.J. Dean, Genetic toxicology of benzene, toluene, xylenes and phenols, Mutat. Res. 47, 75–97 (1978).Google Scholar
  28. 28.
    F. J. de Serres, The utility of short-term tests for mutagenicity in the toxicological evaluation of environment agents, Mutat. Res. 33, 11–15 (1975),Google Scholar
  29. 29.
    F. J. de Serres and J. Ashby, eds., Progress in Mutation Research, Vol. 1, Evaluation of Short-Term Tests for Carcinogens, Elsevier/North-Holland, New York (1981).Google Scholar
  30. 30.
    J. W. Drake, Environmental mutagenesis: Evolving strategies in the USA, Mutat. Res. 33, 65–72 (1975).Google Scholar
  31. 31.
    U. Francke and N. Oliver, Quantitative analysis of high–resolution trypsin–Giemsa bands on human prometaphase chromosomes, Hum. Genet. 45, 137–165 (1978).Google Scholar
  32. 32.
    J. R. Fry, C. A. Jones, P. Wiebkin, P. Bellemann, and J. W. Bridges, The enzymic isolation of adult rat hepatocytes in a functional and viable state, Anal. Biochem. 71, 341–350 (1976).Google Scholar
  33. 33.
    M. E. Gaulden, Telophase behavior of extranuclear chromatin and its bearing on telophase changes in chromosomes, Experientia 10, 18–20 (1954).Google Scholar
  34. 34.
    M. E. Gaulden, DNA synthesis and X-ray effects at different mitotic stages in grasshopper neuroblasts, Genetics 41, 645 (1956).Google Scholar
  35. 35.
    M. E. Gaulden, in: Mitogenesis (N. S. Ducoff and C. F. Ehret, eds.), pp. 38–39, University of Chicago Press (1959).Google Scholar
  36. 36.
    M. E. Gaulden, Chromosome aberrations as a cause of subtle teratogenesis and use of the grasshopper neuroblast to test potential mutagens and teratogens, Cytogenet. Cell Genet. 33, 114–118 (1982).Google Scholar
  37. 37.
    M. E. Gaulden and J. G. Carlson, Cytological effects of colchicine on the grasshopper neuroblast in vitro with special reference to the origin of the spindle, Exp. Cell Res. 2, 416–433 (1951).Google Scholar
  38. 38.
    M. E. Gaulden and K. L. Kokomoor, Influence of yolk on mitotic rate in untreated and x-rayed grasshopper neuroblasts in vitro, Proc. Soc. Exp. Biol. Med. 90, 309–314 (1955).Google Scholar
  39. 39.
    M. E. Gaulden and J. C. Liang, Insect cells for testing clastogenic agents, in: Cytogenetic Assays of Environmental Mutagens (T. C. Hsu, ed.), pp. 107–135, Allenheld, Osmun & Co., Totowa, New Jersey (1982).Google Scholar
  40. 40.
    M. E. Gaulden and R. C. Murry, Medical radiation and possible adverse effects on the human embryo, in: Radiation Biology in Cancer Research (R. E. Meyn and H. R. Withers, eds.), pp. 277–294, Raven Press, New York (1980).Google Scholar
  41. 41.
    M. E. Gaulden and R. P. Perry, Influence of the nucleolus on mitosis as revealed by ultraviolet microbeam irradiation, Proc. Natl. Acad. Sei. USA 44, 553–559 (1958).Google Scholar
  42. 42.
    M. E. Gaulden and C. B. Read, Linear dose-response of acentric chromosome fragments down to 1 R of x-rays in grasshopper neuroblasts, a potential mutagen test system, Mutat. Res. 49, 55–60 (1978).Google Scholar
  43. 43.
    M. E. Gaulden, M. Nix, and J. Moshman, Effects of oxygen concentration of X-ray-induced mitotic inhibition in living Chortophaga neuroblasts, ]. Cell. Comp. Physiol. 41, 451–470 (1953).Google Scholar
  44. 44.
    M. E. Gaulden, M. J. Ferguson, and N. B. Weber, A eukaryotic cell with a 2-hour cell cycle (38°C) for determining effects of mutagens on chromosomes and cell cycle kinetics, Environ. Mutagen. 5, 375–376 (1983).Google Scholar
  45. 45.
    R. E. Gibson and S. M. D’Ambrosio, Differing levels of excision repair in human fetal dermis and brain cells, Photochem. Photobiol. 35, 181–185 (1982).Google Scholar
  46. 46.
    C. S. Goodman, Neuron duplications and deletions in locust clones and clutches, Science 197, 1384–1386 (1977).Google Scholar
  47. 47.
    C. S. Goodman, Isogenic grasshoppers: Genetic variability in the morphology of identified neurons, J. Comp. Neurol. 182, 681–705 (1978).Google Scholar
  48. 48.
    C. S. Goodman, Isogenic grasshoppers: Genetic variability and development of identified neurons, in: Neurogenetics: Genetic Approaches to the Nervous System (X. O. Breakefield, ed.), pp. 101–151, Elsevier, New York (1979).Google Scholar
  49. 49.
    C. S. Goodman, Embryonic development of identified neurons in the grasshopper, in: Neuronal Development (N. C. Spitzer, ed.), pp. 171–212, Springer Science+Business Media New York (1982).Google Scholar
  50. 50.
    J. Greilhuber, Why plant chromosomes do not show G-bands, Theor. Appl. Genet. 50, 121–124 (1977).Google Scholar
  51. 51.
    J. C. Hartley, The shell of acridid eggs, Q.J. Microsc. Sei. 102, 249–255 (1961).Google Scholar
  52. 52.
    J. E. Henry, B. P. Nelson, and J. W. Jutila, Pathology and development of the grasshopper inclusion body virus in Melanoplus sanguinipes,J. Virol. 3, 605–610 (1969).Google Scholar
  53. 53.
    J. E. Henry and E. A. Oma, Sulphonamide antibiotic control of Malameba locustae (King and Taylor) and its effect on grasshoppers, Acrida 4, 217–226 (1975).Google Scholar
  54. 54.
    K. C. Highnam and P. T. Haskell, The endocrine systems of isolated and crowded Locusta and Schistocerca in relation to oocyte growth and the effects of flying upon maturation,/. Insect Physiol. 10, 849–864 (1964).Google Scholar
  55. 55.
    H. E. Hinton, Biology of Insect Eggs, Vol. 1, Pergamon Press, Oxford, (1981).Google Scholar
  56. 56.
    A. Hollaender, A history of attempts to quantify environmental mutagenesis, in: Environmental Mutagens and Carcinogens (T. Sugimura, S. Kondo, and H. Takebe, eds.), pp. 21–36, Alan R. Liss, New York (1982).Google Scholar
  57. 57.
    P. Hunter-Jones, Rearing and Breeding of Locusts in the Laboratory, Pamphlet of Anti-Locust Research Centre, Wrights Lane, London, W.8., England (1966).Google Scholar
  58. 58.
    International Conference on Regulation of Insect Development and Behavior (Sei. Pap. Inst. Organ. Phys. Chem., Wroclaw Tech. Univ., No. 22), Parts I and II, Wroclaw, Poland (1981).Google Scholar
  59. 59.
    L. J. Jacobs, J. A. Marx, and T. R. Grey, Comparison of the mutagenic responses of lung-derived and skin-derived human diploid fibroblast populations, Environ. Mutagen. 4, 373 (1982).Google Scholar
  60. 60.
    M. Jacobson, Developmental Neurobiology, 2nd ed., Springer Science+Business Media New York (1978).Google Scholar
  61. 61.
    D. Jenssen and C. Ramel, Factors affecting the induction of micronuclei at low doses of x-rays, MMS and dimethyl-nitrosamine in mouse erythroblasts, Mutat. Res. 58, 51–65 (1978).Google Scholar
  62. 62.
    O. A. Johannsen and F. H. Butt, Embryology of Insects and Myriapods, McGraw-Hill, New York (1941).Google Scholar
  63. 63.
    B. M. Jones, Endocrine activity during insect embryogenesis. Control of events in development following the embryonic moult (Locusta migratoria and Locustana par-dalina, Orthoptera), J. Exp. Biol. 33, 685–696 (1956).Google Scholar
  64. 64.
    R. G. Kessel, Cytological studies on the subesophageal body cells and pericardial cells in embryos of the grasshopper, Melanoplus differentialis (Thomas), J. Morphol. 109, 289–319 (1961).Google Scholar
  65. 65.
    R. L. King and E. H. Slifer, Insect development. VIII. Maturation and early development of unfertilized grasshopper eggs, J. Morphol. 56, 603–619 (1934).Google Scholar
  66. 66.
    J. B. Kreasky, A growth factor in romaine lettuce for the grasshoppers Melanoplus sanguinipes (F.) and M. bivattatus (Say), J. Insect Physiol. 8, 493–504 (1962).Google Scholar
  67. 67.
    Laboratory Safety Monograph, Supplement to the NIH Guidelines for Recombinant DNA Research, U. S. Department of Health, Education and Welfare, Public Health Service, National Institutes of Health, Bethesda, Maryland, (January 2, 1979 ), p. 5.Google Scholar
  68. 68.
    W. H. R. Langridge and D. W. Roberts, Structural proteins of Amsacta moorei, Euxoa auxiliaris, and Melanoplus sanguinipes entomopoxviruses, J. Invertebr. Pathol. 39, 346–353 (1982).Google Scholar
  69. 69.
    W. M. Leach, The thymidine pool in grasshopper neuroblasts during mitosis, J. Cell Biol. 36, 282–286 (1968).Google Scholar
  70. 70.
    J. C. Liang and M. E. Gaulden, The neuroblast of the grasshopper embryo as a new mutagen test system. I. In vitro radiosensitivity, Mutat. Res. 93, 401–408 (1982).Google Scholar
  71. 71.
    J. C. Liang and M. E. Gaulden, Neuroblast of the grasshopper embryo as a new mutagen test system. II. Chromosome breakage induced by in vitro exposure of embryos to the direct-acting mutagens 4NQO, MNNG, Adriamycin and bleomycin, Environ. Mutagen 4, 279–290 (1982).Google Scholar
  72. 72.
    J. C. Liang and M. E. Gaulden, The neuroblast of the grasshopper embryo as a new mutagen test system. III. Chromosome breakage induced by cyclophosphamide is greater with activation by rat hepatocytes than by S12 mix, Mutat. Res. 119, 71–77 (1983).Google Scholar
  73. 73.
    J. C. Liang, T. C. Hsu, and J. E. Henry, Cytogenetic assays for mitotic poisons: The grasshopper embryo system for volatile liquids, Mutat. Res. 113, 467–479 (1983).Google Scholar
  74. 74.
    D. C. Lloyd, R. J. Purrott, G. W. Dolphin, D. Bolton, and A. A. Edwards, The relationship between chromosome aberrations and low LET radiation dose to human lymphocytes, Int. J. Radiat. Biol. 28, 75–90 (1975).Google Scholar
  75. 75.
    D. Ludwig, The effect of different relative humidities on respiratory metabolism and survival of the grasshopper Chortophaga viridifasciata De Geer, Physiol. Zool. 10, 342–351 (1937).Google Scholar
  76. 76.
    T. H. Ma, Micronuclei induced by X-rays and chemical mutagens in meiotic pollen mother cells of Tradescantia, a promising mutagen test system, Mutat. Res. 64, 307– 313 (1979).Google Scholar
  77. 77.
    B. S. S. Masters, C. H. Williams, Jr., and H. Kamin, The preparation and properties of microsomal TPNH-cytochrome c reductase from pig liver, in: Methods in Enzymology (R. W. Estabrook and M. E. Pullman, eds.), Vol. 10, pp. 565–572, Academic Press, New York (1967).Google Scholar
  78. 78.
    P. C. Mazuranich, Construction of a metal-framed cage for studies with grasshoppers, Acrida4, 151–154 (1975).Google Scholar
  79. 79.
    C. E. McClung, The accessory chromosome-Sex determinant? Biol. Bull. 3, 43–84 (1902).Google Scholar
  80. 80.
    R. A. McGrath, X-ray-induced incorporation of tritiated thymidine into deoxyribonucleic acid of grasshopper neuroblast chromosomes, Radiat. Res. 19, 526–537 (1963).Google Scholar
  81. 81.
    R. A. McGrath, W. M. Leach, and J. G. Carlson, Cell stages refractory to thymidine incorporation induced by x–rays, Exp. Cell Res. 37, 39–44 (1965).Google Scholar
  82. 82.
    K. S. McKinlay and W. K. Martin, Effects of temperature and piperonyl butoxide on the toxicity of six carbamates to the grasshopper Melanoplus sanguinipes (=M. bilituratus), Can. Entomol. 99, 748–751 (1967).Google Scholar
  83. 83.
    J. W. McNabb, A study of the chromosomes in meiosis, fertilization, and cleavage in the grasshopper egg (Orthoptera),J. Morphol. Physiol. 45, 47–95 (1928).Google Scholar
  84. 84.
    F. Mitelman, P. G. Nilsson, L. Brandt, G. Alimena, R. Gastaldi, and B. Dallapiccola, Chromosome pattern, occupation, and clinical features in patients with acute nonlymphocytic leukemia, Cancer Genet. Cytogenet. 4, 197–214 (1981).Google Scholar
  85. 85.
    W. Moore, Jr. and M. Colvin, Chromosomal changes in the Chinese hamster thyroid following x-irradiation in vivo, Int. J. Radiat. Biol. 14, 161–167 (1968).Google Scholar
  86. 86.
    G. A. Mueller, M. E. Gaulden, and W. Drane, The effects of varying concentrations of colchicine on the progression of grasshopper neuroblasts into metaphase, J. Cell Biol. 48, 253–265 (1971).Google Scholar
  87. 87.
    M. S. S. Murthy, Radiation equivalence of genotoxic chemicals. Validation in cultured mammalian cell lines, Mutat. Res. 94, 189–197 (1982).Google Scholar
  88. 88.
    O. E. Nelsen, The segregation of the germ cells in the grasshopper, Melanoplus differentialis (Acrididae; Orthoptera), J. Morphol. 55, 545–575 (1934).Google Scholar
  89. 89.
    D. R. Nelson, W. D. Valovage, and R. D. Frye, Infection of grasshoppers with Entomophaga (= Entomophthora) grylli by injection of germinating resting spores,J. Invertebr. Pathol. 39, 416–418 (1982).Google Scholar
  90. 90.
    S. Neumann-Visscher, The embryonic diapause of Aulocara elliotti (Orthoptera, Acrididiae), Cell Tiss. Res. 174, 433–452 (1976).Google Scholar
  91. 91.
    M. Norris, Reproduction in the desert locust (Schistocerca gregaria Forsk.) in relation to density and phase, Anti-Locust Bull. London 13 (1952).Google Scholar
  92. 92.
    Y. Ohnuki, Demonstration of the spiral structure of human chromosomes, Nature 208, 916–917 (1965).Google Scholar
  93. 93.
    O. Okelo, Studies on the Reproductive Physiology of the Female Grasshopper, Schistocerca vaga Scudder, Ph.D. Thesis, University of California, Berkeley (1975).Google Scholar
  94. 94.
    D. Otte, The North American Grasshoppers. Acrididae: Gomphocerinae and Acridinae, Vol. I, Harvard University Press, Cambridge, Massachusetts (1981).Google Scholar
  95. 95.
    D. Otte and K. Williams, Environmentally induced color dimorphisms in grasshoppers, Syrbula admirabilis, Dichromorphia viridis, and Chortophaga viridifasciata, Ann. Entomol. Soc. Am. 65, 1154–1161 (1972).Google Scholar
  96. 96.
    R. Pickford, Observations on the reproductive potential of Melanoplus bilituratus (Wlk.) (Orthoptera: Acrididae) reared on different food plants in the laboratory, Can. Entomol. 90, 483–485 (1958).Google Scholar
  97. 97.
    R. Pickford, Survival, fecundity, and population growth of Melanoplus bilituratus (Wik.) (Orthoptera: Acrididae) in relation to date of hatching, Can. Entomol. 92, 1–10 (1960).Google Scholar
  98. 98.
    R. Pickford and R. L. Randell, A non-diapause strain of the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae), Can. Entomol. 101, 894–896 (1969).Google Scholar
  99. 99.
    D. M. Prescott, The cell cycle and the Gl period, in: Cell Growth (C. Nicolini, ed.), pp. 305–314, Springer Science+Business Media New York (1980).Google Scholar
  100. 100.
    R. J. Preston, J. G. Brewen, and K. P. Jones, Radiation-induced chromosome aberrations in Chinese hamster leukocytes, A comparison of in vivo and in vitro exposures, Int. J. Radiat. Biol. 21, 397–400 (1972).Google Scholar
  101. 101.
    J. C. Reese, Insect dietetics: Complexities of plant-insect interactions, in: Current Topics in Insect Endocrinology and Nutrition (G. Bhaskaran, S. Friedman, and J. G. Rodriguez, eds.), pp. 317–335, Springer Science+Business Media New York (1981).Google Scholar
  102. 102.
    H. Remmer, H. Griem, J. B. Schenkman, and R. W. Estabrook, Methods for the elevation of hepatic microsomal mixed function oxidase levels and cytochrome P-450, in: Methods in Enzymology (R. W. Estabrook and M. E. Pullman, eds.), Vol. 10, pp. 703–708, Academic Press, New York (1967).Google Scholar
  103. 103.
    P. W. Riegert, Embryological development of a nondiapause form of Melanoplus bilituratus Walker (Orthoptera: Acrididae), Can. J. Zool. 39, 491–494 (1961).Google Scholar
  104. 104.
    H. S. Roberts, The mechanism of cytokinesis in neuroblasts of Chortophaga viridifas-ciata (De Geer)J. Exp. Zool. 130, 83–105 (1955).Google Scholar
  105. 105.
    M. L. Roonwal, Studies on the embryology of the African migratory locust, Locusta migratoria migratorioides Reiche and Frm. (Orthoptera, Acrididae). II. Organogeny, Philos. Trans. R. Soc. London B 227, 175–244 (1937).Google Scholar
  106. 106.
    J. G. Saha, R. L. Randell, and P. W. Riegert, Component fatty acids of grasshoppers (Orthoptera: Acrididae), Life Sci. 5, 1597–1603 (1966).Google Scholar
  107. 107.
    R. W. Salt, A key to the embryological development of Melanoplus bivittatus (Say), M. mexicanus mexicanus (Sauss.), and M. packardii Scudder, Can. J. Res. D 27, 233–235 (1949).Google Scholar
  108. 108.
    R. W. Salt, Water uptake in eggs of Melanoplus bivittatus (Say), Can. J. Res. D 27, 236–242 (1949).Google Scholar
  109. 109.
    S. O. Schiff, Ribonucleic acid synthesis in neuroblasts of Chortophaga viridifasciata (de Geer), as determined by observations of individual cells in the mitotic cycle, Exp. Cell Res. 40, 264–276 (1965).Google Scholar
  110. 110.
    S. S. Sekhon, Eleanor H. Slifer: An appreciation,J. Morphol. 168, 3–4 (1981).Google Scholar
  111. 111.
    E. I. Shaw, Protection by sodium hydrosulfite against x-ray-induced mitotic inhibition in grasshopper neuroblast, Proc. Soc. Exp. Biol. Med. 92, 232–236 (1956).Google Scholar
  112. 112.
    E. H. Slifer, Insect development. IV. External morphology of grasshopper embryos of known age and with a known temperature history,J. Morphol. 53, 1–21 (1932).Google Scholar
  113. 113.
    E. H. Slifer, The origin and fate of the membranes surrounding the grasshopper egg; together with some experiments on the source of the hatching membrane, Q. J. Microsc. Sci 79., 493–506 (1937).Google Scholar
  114. 114.
    E. H. Slifer, The formation and structure of a special water-absorbing area in the membranes covering the grasshopper egg, Q.J. Microsc. Sci. 80, 437–459 (1938).Google Scholar
  115. 115.
    E. H. Slifer, A cytological study of the pleuropodia of Melanoplus differentialis (Orthoptera, Acrididae) which furnishes new evidence that they produce the hatching enzyme,J. Morphol. 63, 181–206 (1938).Google Scholar
  116. 116.
    E. H. Slifer, Removing the shell from living grasshopper eggs, Science 102, 282 (1945).Google Scholar
  117. 117.
    E. H. Slifer, Variations, during development, in the resistance of the grasshopper egg to a toxic substance, Ann. Entomol. Soc. Am. 42, 134–140 (1949).Google Scholar
  118. 118.
    E. H. Slifer, Diapause in the eggs of Melanoplus differ entialis (Orthoptera, Acrididae), J. Exp. Zool.138, 259–282 (1958).Google Scholar
  119. 119.
    E. H. Slifer and R. L. King, The inheritance of diapause in grasshopper eggs,J. Hered. 52, 39–44 (1961).Google Scholar
  120. 120.
    D. S. Smith, Utilization of food plants by the migratory grasshopper, Melanoplus bilituratus (Walker) (Orthoptera: Acrididae), with some observations on the nutritional value of the plants, Ann. Entomol. Soc. Am. 52, 674–680 (1959).Google Scholar
  121. 121.
    D. S. Smith, Fecundity and oviposition in the grasshoppers Melanoplus sanguinipes (F.) and Melanoplus bivittatus (Say.), Can. Entomol. 98, 617–621 (1966).Google Scholar
  122. 122.
    D. S. Smith, Crowding in grasshoppers. I. Effect of crowding within one generation on Melanoplus sanguinipes, Ann. Entomol. Soc. Am. 63, 1775–1776 (1970).Google Scholar
  123. 123.
    D. S. Smith and F. E. Northcott, The effects on the grasshopper, Melanoplus mexicanus mexicanus (Sauss.) (Orthoptera: Acrididae), of varying the nitrogen content in its food plant, Can. J. Zool. 29, 297–304 (1951).Google Scholar
  124. 124.
    B.J. Stevens, The fine structure of the nucleolus during mitosis in the grasshopper neuroblast cell, J. Cell Biol. 24, 349–368 (1965).Google Scholar
  125. 125.
    R. E. Stephens and J. G. Carlson, Action of actinomycin D on grasshopper neuroblasts in culture, Exp. Cell Res. 74, 42–50 (1972).Google Scholar
  126. 126.
    R. E. Stephens, M. B. Cole, Jr., A. A. Cole, and J. G. Carlson, Parasitization of Chortophaga viridifasciata by larvae of Scelio bisulcus, Association of Southeastern Biologists Bull. 15, 55 (1968).Google Scholar
  127. 127.
    I. Sunshine, ed., CRC Handbook of Analytical Toxicology, p. 673, Chemical Rubber Co., Cleveland, Ohio (1969).Google Scholar
  128. 128.
    C. A. Tauber and M. J. Tauber, Insect seasonal cycles: Genetics and evolution, Annu. Rev. Ecol. Syst. 12, 281–308 (1981).Google Scholar
  129. 129.
    J. Thornton and M. E. Gaulden, Relation of X-ray-induced thymidine uptake to chromosome reversion at prophase in grasshopper neuroblasts, Int. J. Radiat. Biol. 19, 65–78 (1971).Google Scholar
  130. 130.
    K. R. Tsang, F. A. Freeman, T. J. Kurtti, M. A. Brooks, and J. E. Henry, New cell lines from embryos of Melanoplus sanguinipes (Orthoptera: Acrididae), Acrida 10, 105–112 (1981).Google Scholar
  131. 131.
    B. Uvarov, Grasshoppers and Locusts, A Handbook of General Acridology, Cambridge University Press, London (1966).Google Scholar
  132. 132.
    S. N. Van Horn, Studies on the embryogenesis of Aulocara elliotti (Thomas) (Orthoptera, Acrididae). II. Developmental variability and the effects of maternal age and environment,J. Morphol. 120, 115–134 (1966).Google Scholar
  133. 133.
    S. N. Visscher, Regulation of grasshopper fecundity, longevity and egg viability by plant growth hormones, Experientia 36, 130–131 (1980).Google Scholar
  134. 134.
    S. N. Visscher, Effects of abscisic acid in animal growth and reproduction, in: Abscisic Acid (F. T. Adcjicott, ed.), pp. 553–579 Praeger, New York (1983).Google Scholar
  135. 135.
    S. N. Visscher, R. Lund, and W. Whitmore, Host plant growth temperatures and insect rearing temperatures influence reproduction and longevity in the grasshopper, Aulocara elliotti (Orthoptera: Acrididae), Environ. Entomol. 8, 253–258 (1979).Google Scholar
  136. 136.
    D. F. Went, Egg activation and parthenogenetic reproduction in insects, Biol. Rev. 57, 319–344 (1982).Google Scholar
  137. 137.
    W. M. Wheeler, A contribution to insect embryology,J. Morphol. 8, 1–160 (1893).Google Scholar
  138. 138.
    M. J. D. White, Animal Cytology and Evolution, 3rd ed., Cambridge University Press, Cambridge (1973).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Mary Esther Gaulden
    • 1
  • Jan C. Liang
    • 2
  • Martha J. Ferguson
    • 1
  1. 1.Radiation Biology Section, Department of RadiologyUniversity of Texas Health Science Center at DallasDallasUSA
  2. 2.Department of Cell BiologyUniversity of Texas System Cancer Center, M. D. Anderson Hospital and Tumor InstituteHoustonUSA

Personalised recommendations