Viruses And Demyelination

  • Richard A. Shubin
  • Leslie P. Weiner


Multiple sclerosis (MS) has been recognized as a distinct clinical entity for over 100 years, but its etiology remains elusive. In all likelihood, a viral infection during childhood or adolescence triggers an autoimmune response to oligodendrocytes and/or myelin in susceptible individuals (1). Patients with MS are now being treated with cyclophosphamide (2, 3), cyclosporine (4), azathioprine (5), whole body radiation (6, 7), or plasmapheresis (8), on the assumption that MS is an autoimmune disease. These therapies have potentially serious hematologic, gastrointestinal, infectious, or neoplastic side effects (9). Immunosuppressive therapy, even if effective in stabilizing multiple sclerosis, is less than ideal because of the above mentioned side effects. Establishment of the etiology of MS may allow for more earlier, more specific, and less toxic treatment. In this paper we will review the epidemiologic evidence for a viral etiology of MS, the current state of candidate viruses, viral associated human demyelinating diseases other than MS, and the animal models of viral-induced demyelination.


MUltiple Sclerosis MUltiple Sclerosis Patient Progressive Multifocal Leukoencephalopathy Demyelinating Disease Progressive Multifocal Leukoencephalopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Waksman BH, Reingold SL: Viral etiology of multiple sclerosis. Wheredoes the truth lie? Trends in Neuroscience 9:388, 1986CrossRefGoogle Scholar
  2. 2.
    Gonsdette RE, Delmotte P: Intensive immunosuppression with cyclophosphamide in multiple sclerosis: Follow-up of 116 patients for 2–6 years.J Neurol 173, 1977Google Scholar
  3. 3.
    Weiner HL, Hauser SL, Hafler DA, Fallis RJ, Lehrich JR, Dawson DM: The use of cyclophosphamide in the treatment of multiple sclerosis. Ann NY Acad Sci 436:373, 1985CrossRefGoogle Scholar
  4. 4.
    Kappos L, Patzold V, Pommasch D, Poser S, Haas J, Krauseneck P, Malin JP, Fierz W, Graffensled B, Gugerli US: Cyclosporine versus azathioprine in the long-term treatment of multiple sclerosis. Results of the German Multicenter Study. Ann Neurol 23:56, 1988PubMedCrossRefGoogle Scholar
  5. 5.
    Aimard G, Confavrev XC, Devic M: Long-term immunosuppressive treatment with azathioprine in multiple sclerosis: A 10 year trial with 77 patients. IN: Bauer HJ, Poser C, Ritter G (eds.): Progress in Multiple Sclerosis, New York, Springer-Verlag, 371, 1980Google Scholar
  6. 6.
    Hafstein MP, Devereux C, Tronno R, Zito G, Vidaver R, Dowling PC, Lavenhar M, Cook SD: Total lymphoid irradiation in chronic progressive multiple sclerosis: A preliminary report. NY Acad Sci 436:397, 1984CrossRefGoogle Scholar
  7. 7.
    Hafstein MP, Devereux C, Troiano R, Hafstein MP, Hernandez E, Lavenhar M, Vidaver R, Dowling PC: Effect of total lymphoid irradiation in chronic progressive multiple sclerosis. Lancet 1:1405, 1986PubMedGoogle Scholar
  8. 8.
    Weiner HL, Dawson DM: Plasmapheresis in multiple sclerosis: Preliminary study. Neurology 30:1029, 1980PubMedGoogle Scholar
  9. 9.
    Hohlfeld R, Michels M, Heininger K, Besinger U, Toyka KV: Azathioprine toxicity during long-term immunosuppression of generalized myasthenia gravis. Neurology 38:253, 1988Google Scholar
  10. 10.
    Visscher BR, Clark VA, Detels R, Malingren RM, Valdiviezo NL, Dudley JP: Two populations with multiple sclerosis. Clinical and demographic characteristics. J Neurol 225:237, 1981PubMedCrossRefGoogle Scholar
  11. 11.
    Kurtzke JF: Epidemiology of multiple sclerosis. IN: Hallpike JF, Adams CWM, Tourtellotte WN (eds). Multiple Sclerosis: Pathology, Diagnosis and Management. Baltimore, Williams and Wilkins, 47–95, 1983Google Scholar
  12. 12.
    Matthews WB: The pattern of disease. IN: Matthews WB, Acheson ED, Batchelor JR, Weiler RO (eds). McAlpine’s Multiple Sclerosis. Edinburgh, Churchill Livingston, 3–26, 1985Google Scholar
  13. 13.
    Acheson ED: Epidemiology of multiple sclerosis. Br Med Bull 33:9, 1977PubMedGoogle Scholar
  14. 14.
    Limburg CC: The geographic distribution of multiple sclerosis and estimated prevalence for the United States. Proc Assoc Res Nerv Ment Dis 28:15, 1950Google Scholar
  15. 15.
    Alter M, Leibowitz V, Speen J: Risk of multiple sclerosis related to age at immigration to Israel. Arcch Neurol 15:234, 1966Google Scholar
  16. 16.
    Kurtzke JF: A method for estimating the age at which immigration of white immigrants to South Africa with an example of its importance. S Afr Med J 1:663, 1970Google Scholar
  17. 17.
    Jersild C, Svejgaard A, Fog T: HLA antigens and multiple sclerosis. Lancet 1:1240, 1972PubMedCrossRefGoogle Scholar
  18. 18.
    Naito S, Namerow N, Mickey MR, Terasaki PI: Multiple sclerosis: Association with HLA-A3. Tissue Antigens 2:1, 1972PubMedCrossRefGoogle Scholar
  19. 19.
    Jersild C, Dupont B, Fog T, Platz PJ, Svejgard A: Histocompatibility determinants in multiple sclerosis. Transplant Rev 22:148, 1975PubMedGoogle Scholar
  20. 20.
    Fog T, Schuller E, Jersild C, Engelfriet CF, Bertrams J: Neurology. Multiple sclerosis. IN: Dausset J, Sveggaard A (eds). HLA and Disease. Copenhagen, Munksgaard, 108–109, 1977Google Scholar
  21. 21.
    Eldridge R, McFarland H, Seyer J, Sadowsby D, Krebs V: Familial multiple sclerosis: Clinical, histocompatibility and viral serological studies. Ann Neurol 3:75, 1978CrossRefGoogle Scholar
  22. 22.
    Roberts DF, Roberts MJ, Poskanzer DC: Genetic analysis of multiple sclerosis in Orkney. J Epidem Comm Health 33:229, 1979CrossRefGoogle Scholar
  23. 23.
    Ebers GC: Genetic factors in multiple sclerosis. Neurologic Clinics 1:645, 1983PubMedGoogle Scholar
  24. 24.
    Compston DAS, Vakarelis BM, Paul E, McDonald WI, Batchelor JR, Mims CA: Viral infection in patients with multiple sclerosis and HLA-DR matched controls. Brain 109:325, 1986PubMedCrossRefGoogle Scholar
  25. 25.
    Bobowick AR, Kurtzke JF, Brody JA, Hrubec Z, Gillespie M: Twin study of multiple sclerosis: an epidemiologic inquiry. Neurology 28:978, 1978PubMedGoogle Scholar
  26. 26.
    Kurtzke JF, Hyllested K: Multiple sclerosis in the Faroe Islands : I. Clinical and epidemiological features. Ann Neurol 5:6, 1979PubMedCrossRefGoogle Scholar
  27. 27.
    Kurtzke JF, Hyllested K: Multiple sclerosis in the Faroe Islands : III. An alternative assessment of the three epidemics. Acta Neurol Scan 76:317, 1987CrossRefGoogle Scholar
  28. 28.
    Johnson RT: Viral infections of the nervous system. New York, Raven Press, 237–270, 1982Google Scholar
  29. 29.
    Haase AT, Ventura P, Gibbs CJ Jr, Tourtellotte WW: Measles virus nucleotide sequence: Detection by hybridization in situ. Science 212:672, 1981PubMedCrossRefGoogle Scholar
  30. 30.
    Fraser NW, Lawrence WL, Wroblewska Z, Gilden DH, Koprowski H: Herpes simplex type I DNA in human brain tissue. Proc Natl Acad Sci 78:;6461, 1981PubMedCrossRefGoogle Scholar
  31. 31.
    Tanaka R, Iwasaki Y, Koprowski H: Intracisternal virus-like particles in the brain of multiple sclerosis patients. J Neurol Sci 28:121, 1976PubMedCrossRefGoogle Scholar
  32. 32.
    Adams JM, Imagawa DT: Measles antibodies in multiple sclerosis. Proc Soc Exp Bio Med 3:562, 1962Google Scholar
  33. 33.
    Norrby E: Viral antibodies in multiple sclerosis. Prog Med Virol 24:1, 1978PubMedGoogle Scholar
  34. 34.
    Haire M: Significance of virus antibodies. Br Med J 33:40, 1977Google Scholar
  35. 35.
    Cook SD, Dowling PC, Russell WC: Neutralizing antibodies to canine distemper virus and measles virus in multiple sclerosis. J Neurol Sci 41:61, 1979PubMedCrossRefGoogle Scholar
  36. 36.
    Vandvic B, Degre M: Measles virus antibodies in serum and cerebrospinal fluid in patients with multiple sclerosis and other neurological disorders with special reference to measles antibody synthesis within the central nervous system. J Neurol Sci 24:201, 1975CrossRefGoogle Scholar
  37. 37.
    Shirodaria PV, Haire M, Fleming E, Menett JD, Hawkins SA, Roberts SD: Viral antibody titers: Comparison in patients with multiple sclerosis and rheumatoid arthritis. Arch Neurol 44:1237, 1987PubMedGoogle Scholar
  38. 38.
    Koprowski H, DeFreitas EC, Harper ME, Sandberg-Wohlheim M, Sheremata WA, Robert-Guroff M, Saxinger CW, Feinberg MB, Wong-Staal F, Gallo RC: Multiple sclerosis and human T cell lymphotropic retroviruses. Nature 318:154, 1985PubMedCrossRefGoogle Scholar
  39. 39.
    Ohta M, Ohta K, Mori F, Nishitani H, Saida T: Sera from patients with multiple sclerosis react with human T cell lymphotropic virus-1 gag proteins but not env proteins-Western blotting analysis. J Immunol 137:3440, 1986PubMedGoogle Scholar
  40. 40.
    Hauser SL, Aubert JS, Burks JS, Kerr C, Lyon-Caen 0, de The G, Brahic M: Analysis of human T lymphotropic virus sequences in multiple sclerosis tissue. Nature 322:176, 1986PubMedCrossRefGoogle Scholar
  41. 41.
    Karpas A, Kampf U, Siden A, Koch M, Poser M: Lack of evidence for involvement of known human retroviruses in multiple sclerosis. Nature 322:177, 1986PubMedCrossRefGoogle Scholar
  42. 42.
    Rice GPA, Armstrong A, Bulman DE, Paty DW, Ebers GC: Absence of antibody to HTLV-I and III in sera of Canadian patients with multiple sclerosis and chronic myelopathy. Ann Neurol 20:533, 1986PubMedCrossRefGoogle Scholar
  43. 43.
    Birnbaum G, Aubitz S, Kotilinek L: Search for autonomously proliferating spinal fluid lymphocytes in patients with multiple sclerosis. Neurology 38:28, 1988PubMedGoogle Scholar
  44. 44.
    Kuroda Y, Shibasaki H, Sato H, Okochi K: Incidence of antibody to HTLV-I is not increased in Japanese MS patients. Neurology 37:156, 1987PubMedGoogle Scholar
  45. 45.
    Madden DI, Mundon FK, Tzam NR, Fuccillo DA, Dalakas MC, Calabrese V, Elizan TS, Sever JL: Serologic studies of MS patients, controls and patients with other neurologic diseases: Antibodies to HTLV-I, II, III. Neurology 38:81, 1988PubMedGoogle Scholar
  46. 46.
    Gessain A, Barin F, Vernant JC, Gout 0, Maurs L, Calender A, de The G: Antibodies to human T-lymphotropic virus type-1 in patients with tropical spastic paraparesis. Lancet 2:407, 1985PubMedCrossRefGoogle Scholar
  47. 47.
    Rodgers-Johnson P, Gajdusek DC, Morgano STC: HTLV-I and HTLV-III antibodies and tropical spastic paraparesis. Lancet 2:1247, 1985PubMedCrossRefGoogle Scholar
  48. 48.
    Osarne M, Usuko K, Izumo S. HTLV-I associated myelopathy, a new clinical entity: Lancet 1:1031, 1986Google Scholar
  49. 49.
    Osarne M, Matsumoto M, Usuku K, Izumo S, Igichi N, Anitani H, Tara M, Igata A: Chronic progressive myelopathy associated with elevated antibodies to human T-lymphotropic virus type I and adult T cell leukemia-like cells. Ann Neurol 21:117, 1987CrossRefGoogle Scholar
  50. 50.
    Vernant JC, Maurs L, Gessin A, Barin F, Gout 0, Delaporte JM, Sanhadjis K, Buisson G, de The G: Endemic tropical spastic paraparesis associated with human T-lymphotropic virus type. A clinical and seroepidemiological study of 25 cases. Ann Neurol 21:123, 1987PubMedCrossRefGoogle Scholar
  51. 51.
    Robertson WB, Cruickshank EK: Jamaican (tropical) myeloneuropathy. IN: Minckler J (ed). Pathology of the nervous system. New York, McGraw Hill, 2466–2476, 1972Google Scholar
  52. 52.
    Piccardo P, Ceroni M, Rodgers-Johnson P, Mora L, Asher DM, Char G, Gibbs CJ Jr, Gajdusek DC: Pathological and immunological observations on tropical spastic paraparesis in patients from Jamaica. Ann Neurol 23 : S156, 1988PubMedCrossRefGoogle Scholar
  53. 53.
    Petito CK, Navia BA, Cho ES, Jordan BD, George DS, Price RW: Vacuolar myelopathy pathologically resembling subacute combined degeneration in patients with the acquired immunodeficiency syndrome. N Eng J Med 312:874, 1985CrossRefGoogle Scholar
  54. 54.
    Levy RM, Bredesen DE, Rosenblum ML: Neurological manifestations of the acquired immunodeficiency syndrome (AIDS): Experience at UCSF and review of the literature. J Neurosurg 62:475, 1985PubMedCrossRefGoogle Scholar
  55. 55.
    Levy JA, Evans L, Chreg-Mayer C, Pan LZ, Lane A, Staben I, Dina D, Wiley C: The biologic and molecular properties of the AIDS-associated retrovirus on that affect antiviral therapy. Ann Inst Pasteur 138:101, 1987CrossRefGoogle Scholar
  56. 55a.
    Navia BA, Jordan BD, Price RW. The AIDS dementia complex: I. Clinical features. Ann Neurol 19:517, 1986PubMedCrossRefGoogle Scholar
  57. 56.
    Navia BA, Cho ES, Petito CK, Price RW: The AIDS dementia complex: II. Neuropathology. Ann Neurol 19:525, 1986PubMedCrossRefGoogle Scholar
  58. 56a.
    McArthur JC, Johnson RT: Primary infection with human immunodeficiency virus. IN: Rosenblum JL, Levy RM, Bredesen DE (eds). AIDS and the nervous system. New York, Raven Press, 183–201, 1988Google Scholar
  59. 57.
    Padgett BL, Walker DL, ZuRhein GM: Cultivation of papova-like virus from human brain with progressive multifocal leukoencephalopathy. Lancet 1:1257, 1971PubMedCrossRefGoogle Scholar
  60. 58.
    Weiner LP, Herndon RM, Narayan 0: Isolation of virus related to SV40 from patients with progressive multifocal leukoencephalopathy. N Eng J Med 286:385, 1972CrossRefGoogle Scholar
  61. 59.
    Richardson EP Jr: Progressive multifocal leukoencephalopathy. IN: Vinken PJ, Bruyn GW (eds). Handbook of Clinical Neurology Vol 9. Multiple Sclerosis and Other Demyelinating Diseases. New York, Elsevier, 485–499, 1970Google Scholar
  62. 60.
    Miller JR, Barrett RE, Britton CB: Progressive multifocal leukoencephalopathy in a male homosexual with T cell immune deficiency. N Engl J Med 307:1436, 1982PubMedCrossRefGoogle Scholar
  63. 61.
    Krupp LB, Lipton RB. Siverdlow ML, Leeds NE, Llena J: Progressive multifocal leukoencephalopathy: Clinical and radiographic features. Ann Neurol 17:344, 1985PubMedCrossRefGoogle Scholar
  64. 62.
    Rosenblum ML, Levy RM, Bredesen DE: Overview of AIDS and the nervous system. IN: Rosenblum ML, Levy RM, Bredesen DE (eds).AIDS and the Nervous System. New York, Raven Press, 1–12, 1988Google Scholar
  65. 63.
    Fermaglich J, Hardman JM, Earle KM: Spontaneous progressive multifocal leukoencephalopathy. Neurology 20:479, 1970PubMedGoogle Scholar
  66. 64.
    Carroll BA, Lane B, Norman D: Diagnosis of progressive multifocal leukoencephalopathy by computerized tomography. Radiology 122:137, 1977PubMedGoogle Scholar
  67. 65.
    Brooks BR, Walker DL: Progressive multifocal leukoencephalopathy. Neurologic Clinics 2:299, 1984PubMedGoogle Scholar
  68. 66.
    ZuRhein GM: Polyoma-like virions in a human demyelinating disease. Acta Neuropathol 8:57, 1967CrossRefGoogle Scholar
  69. 67.
    Aksamit AJ, Mourrain P, Sever JL, Major EO: Progressive multifocal leukoencephalopathy investigation of three cases using in situ hybridization with JC virus biotinylated DNA probe. Ann Neurol 18:490, 1985PubMedCrossRefGoogle Scholar
  70. 68.
    Chesters PM, Heritage J, McCance DJ: Persistence of DNA sequences of BK virus and JC virus in normal human tissues and in diseased tissues. J Inf Dis 147:676, 1983CrossRefGoogle Scholar
  71. 69.
    Houff SA, Major EO, Katz DA, Kufta CV, Sever JL, Pittaluga S, Roberto JR, Gitt J, Sarni N, Lux W: Involvement of JC virus-infected mononuclear cells from the bone marrow and spleen on the pathogenesis of progressive multifocal leukoencephalopathy. N Eng J Med 318:301, 1988CrossRefGoogle Scholar
  72. 70.
    Walker DL, Padgett BL, ZuRhein GM: Human papovavirus (JC) induction of brain tumors in hamsters. Science 181:674, 1973PubMedCrossRefGoogle Scholar
  73. 71.
    Small JA, Scangos GA, Cork L, Jay G, Khoury G: The early region of human papovavirus: JC induces dysmyelination in transgenic mice. Cell 46:13, 1986PubMedCrossRefGoogle Scholar
  74. 72.
    Trapp BD, Small JA, Pulley M, Khoury G, Scangos GA: Dysmyelination in transgenic mice containing JC virus early region. Ann Neurol 23:38, 1988PubMedCrossRefGoogle Scholar
  75. 73.
    Stoner GL, Ryschkewitsch CF, Walker DL, Webster H de F: JC papovavirus large tumor (T)-antigen expression in brain tissue of acquired immunodeficiency syndrome (AIDS) and non-AIDS patients with progressive multifocal leukoencephalopathy. Proc NAtl Acad Sci 83:2271, 1986PubMedCrossRefGoogle Scholar
  76. 74.
    Chan K-FJ, Stoner GL, Hashim GA, Huang K-P: Substrate specificity of rat brain calcium-activated and phospholipid-dependent protein kinase. Biochem Biophys Res Commun 134:1358, 1986PubMedCrossRefGoogle Scholar
  77. 75.
    Stoner GL, Ryschkewitsch CF, Walker DL, Soffer D, Webster H de F: Immunocytochemical search for JC papovavirus large T-antigen in multiple sclerosis brain tissue. Acta Neuropath 70:345, 1986PubMedCrossRefGoogle Scholar
  78. 76.
    Martin JR, Nathanson N: Animal models of virus-induced demyelination. Prog Neuropathol 4:27, 1979Google Scholar
  79. 77.
    Bailey OT, Pappenheimer AM, Sargent F, Cheever FS, Daniels JB: A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin: II. Pathol J Exp Med 90:195, 1949Google Scholar
  80. 78.
    Cheever FS, Daniels JB, Pappenheimer AM, Bailey OT: A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin: I. Isolation and biological properties of the virus. J Exp Med 90:181, 1949PubMedCrossRefGoogle Scholar
  81. 79.
    Weiner LP: Pathogenesis of demyelination induced by mouse hepatitis virus (JHM virus). Arch Neurol 28:298, 1973PubMedGoogle Scholar
  82. 80.
    Stohlman SA, Freiinger JA: Resistance to fatal central nervous system disease by mouse hepatitis virus, strain JHM. I. Genetic analysis. Immunogenetics 6:277, 1978CrossRefGoogle Scholar
  83. 81.
    Stohlman SA, Freiinger JA, Weiner LP: Resistance to fatal central nervous system disease by mouse hepatitis virus, strain JHM. II. Adherent cell-mediated protection. J Immunol 124:1733, 1980PubMedGoogle Scholar
  84. 82.
    Roos RP: Viruses and demyelination disease of the central nervous system. Neurology Clinics 1681, 1983Google Scholar
  85. 83.
    Herndon RM, Grifin DE, McCormick U, Weiner LP: Mouse hepatitis virus-induced recurrent demyelination: A preliminary report. Arch Neurol 32:32, 1975PubMedGoogle Scholar
  86. 84.
    Stohlman SA, Weiner LP: Chronic central nervous system demyelination in mice after JHM virus infection. Neurology 31:38, 1981PubMedGoogle Scholar
  87. 85.
    Haspel MN, Lampert PW, Oldstone MBA: Temperature sensitive mutants of mouse hepatitis virus produce a high incidence of demyelination. Proc Natl Acad Sci 75:403, 1978CrossRefGoogle Scholar
  88. 86.
    Knobler RL, Lampert PW, Oldstone MBA: Virus persistance and recurring demyelination produced by a temperature-sensitive mutant of MHV-4. Nature 298:279, 1982PubMedCrossRefGoogle Scholar
  89. 87.
    Fleming JO, Trousdale MD, El-Zaatari FAK, Stohlman SA, Weiner LP: Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J Virol 58:869, 1986PubMedGoogle Scholar
  90. 88.
    Nagashima K, Wege H, Meyermann R, ter Meulen V: Coronavirus induced subacute demyelinating encephalomyelitis in rats: a morphological analysis. Acta Neuropathol 44:63, 1978PubMedCrossRefGoogle Scholar
  91. 89.
    Wege H, Watanabe R, ter Meulen V: Relapsing subacute demyelinating encephalomyelitis in rats during the course of coronavirus JHM infection. J Neuroimmunol 6:325, 1984PubMedCrossRefGoogle Scholar
  92. 90.
    Watanabe R, Wege H, ter Meulen V: Adoptive transfer of EAE-like lesions from rats with coronavirus-induced demyelinating encephalomyelitis. Nature 305:150, 1983PubMedCrossRefGoogle Scholar
  93. 91.
    Massa PT, Dorries R, Wege H, ter Meulen V: Analysis and pathogenetic significance of Class II MHC (la) antigen induction on astrocytes during JHM coronavirus infection in rats. IN: Lai MMC and Stohlman SA (eds). Coronaviruses, New York, Plenum Press, 203–218, 1987Google Scholar
  94. 92.
    Massa PT, Dorries R, ter Meulen V: Viral particles induce la antigen expression on astrocytes. Nature 320:543, 1987CrossRefGoogle Scholar
  95. 93.
    Wisniewski H, Raine CS, Kay WJ: Observations on viral demyelinating encephalomyelitis. Canine distemper virus. Lab Invest 26:589, 1972PubMedGoogle Scholar
  96. 94.
    Raine CS: On the development of CNS lesions in natural canine distemper encephalomyelitis. J Neurol Sci 30:13, 1974CrossRefGoogle Scholar
  97. 95.
    McCullough B, Krakowka S, Koestner A: Experimental canine distemper virus-induced demyelination. Lab Invest 31:216, 1974PubMedGoogle Scholar
  98. 96.
    Chew-Lim M, Cuckling AJ, Webb HE: Demyelination in mice after two or three infections with avirulent Semliki Forest virus. Vet Pathol 14:67, 1977CrossRefGoogle Scholar
  99. 97.
    Tremain KE, Ikeda H: Physiological deficits in the visual system of mice infected with Semliki Forest virus and their correlation with those seen in patients with demyelinating disease. Brain 106:879, 1983PubMedCrossRefGoogle Scholar
  100. 98.
    Tansey EM, Allen TGJ, Ikeda H: Enhanced retinal and optic nerve excitability associated with demyelination in mice infected with Semliki Forest virus. Brain 109:15, 1986PubMedCrossRefGoogle Scholar
  101. 99.
    Fazakerley JK, Amor S, Webb HE: Reconstitution of Semliki Forest virus infected mice induces immune mediated pathological changes in the CNS. Clin Exp Immunol 52:15, 1983Google Scholar
  102. 100.
    Fazakerley JK, Webb HE: Semliki Forest virus-induced, immune mediated demyelination: The effect of radiation. Br J Exp Path 68:101, 1987Google Scholar
  103. 101.
    Fazakerley JK, Webb HE: Semliki Forest virus-induced, immunemediated demyelination. Adoptive transfer studies and viral persistence in nude mice. J Gen Virology 67:377, 1987CrossRefGoogle Scholar
  104. 102.
    Kristensson K, Suennerkelm B, Persson L: Latent herpes simplex virus trigeminal ganglionic infection in mice and demyelination in the central nervous system. J Neurol Sci 43:253, 1979PubMedCrossRefGoogle Scholar
  105. 103.
    Townsend JJ: The demyelinating effect of cornial HSV infection in normal and nude (athymic) mice. J Neurol Sci 50:435, 1981PubMedCrossRefGoogle Scholar
  106. 104.
    Townsend JJ, Baringer JR: Morphology of central nervous system disease in immunosuppressive mice after peripheral herpes simplex virus inoculation. Trigeminal root entry zone. Lab Invest 40:178, 1979PubMedGoogle Scholar
  107. 105.
    Kastrukoff LF, Lau AS, Kim SJ: Multifocal CNS demyelination following peripheral inoculation with herpes simplex virus Type I. Ann Neurol 22:52, 1987PubMedCrossRefGoogle Scholar
  108. 106.
    Sigurdsson B: Rida, a chronic encephalitis of sheep. Br Vet J 110:341, 1954Google Scholar
  109. 107.
    Narayan 0, Griffin DE, Chase J: Antigenic drift of visna virus in persistently infected sheep. Science 197:376, 1977PubMedCrossRefGoogle Scholar
  110. 108.
    Petursson G, Nathanson N, Georgsson G, Panitch H, Palsson PA: Pathogenesis of visna: I. Sequential virologic serologic and pathologic studies. Lab Invest 35:402, 1976PubMedGoogle Scholar
  111. 109.
    Nathanson N, Panitch H, Palson PA, Petersson G, Georgsson G: Pathogenesis of visna: II. Effect of immunosuppression upon early central nervous system lesions. Lab Invest 35:444, 1976PubMedGoogle Scholar
  112. 110.
    Lipton HL: Theiler’s virus infection in mice: An unusual biphasic disease leading to demyelination. Infect Immun 11:1147, 1975PubMedGoogle Scholar
  113. 111.
    Brahic M, Stroop WG: Theiler’s virus persists in glial cells during demyelinating disease. Cell 26:123, 1981PubMedCrossRefGoogle Scholar
  114. 112.
    Rodriguez M, Leibovitz JL, Lampert PW: Persistent infection of oligodendrocytes in Theiler’s virus-induced encephalomyelitis. Ann Neurol 13:426, 1983PubMedCrossRefGoogle Scholar
  115. 113.
    Lipton HL, Dal Canto MC: Theiler’s virus-induced demyelination prevention by immunosuppression. Science 192:62, 1976PubMedCrossRefGoogle Scholar
  116. 114.
    Roos RP, Firestone S, Wollmann R, Variakojes D, Arnason BGW: The effect of short-term and chronic immunosuppression on Theiler’s virus demyelination. J Neuroimmunol 2:223, 1982PubMedCrossRefGoogle Scholar
  117. 115.
    Rauch HC, Montgomery IN, Hiriman CL, Harb W, Benjamins JA: Chronic Theiler’s virus infection in mice appearance of myelin basic protein in the cerebrospinal fluid and serum antibody directed against MBP. J Neuroimmunol 14:35, 1987PubMedCrossRefGoogle Scholar
  118. 116.
    Lang W, Wiley C, Lampert P: Theiler’s virus encephalomyelitis is unaffected by treatment with myelin components. J Neuroimmunol 9:109, 1980CrossRefGoogle Scholar
  119. 117.
    Bornstein MB, Miller A, Slagle S, Weitzman M, Crystal H, Drexler E, Keilson M, Mernam A, Wasser Theil-Smollers, Spada V, Weiss W, Arnon R, Jacobsohn I, Tertelbaum D, Sela M: A pilot trial of CoP-1 in exacerbating-remitting multiple sclerosis. N Eng J Med 317:408, 1977CrossRefGoogle Scholar
  120. 118.
    Lipton HL: Persistent Theiler’s murine encephalomyelitis versus infection in mice depends on plaque size. J Gen Viral 46:169, 1980CrossRefGoogle Scholar
  121. 119.
    Lipton HL, Melvold R: Genetic analysis of susceptibility to Theiler’s mice induced demyelinating disease in mice. J Immunol 132:1821, 1984PubMedGoogle Scholar
  122. 120.
    Clatch RJ, k Melvold R, Miller SD, Lipton HL: Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease in mice is influenced by the H-2D region. Correlation with TMEV-specific delayed-type hypersensitivity. J Immunol 135:1408, 1985PubMedGoogle Scholar
  123. 121.
    Clatch RJ, Melvold RW, Dal Canto MS, Miller SD, Lipton HL: The Theiler’s murine encephalomyelitis virus (TMEV) model for multiple sclerosis shows a strong influence of murine equivalents of HLA-A, B, and C. J Neuroimmunol 15:121, 1987PubMedCrossRefGoogle Scholar
  124. 122.
    Miller SD, Clatch RJ, Pevear DC, Trotter JL, Lipton HL: Class II restricted T cell responses in Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease: I. Cross specificity among TMEV substains and related picornaviruses, but not myelin proteins. J Immuno 138:3776, 1987Google Scholar
  125. 123.
    Love S, Wiley CA, Fujinami RS, Lampert PW: Effects of regional spinal x-radiation in demyelinating disease, caused by Theiler’s virus, mouse hepatitis virus or experimental allergic encephalomyelitis. J Neuroimmunology 14:19, 1987CrossRefGoogle Scholar
  126. 124.
    Weiner LP, Johnson RT, Herndon RM: Viral infections and demyelinating disease. N Eng J Med 288:1103, 1973CrossRefGoogle Scholar
  127. 127.
    Fujinami RS, Oldstone MBA: Amino acid homology and immune response between the encephalitogenic site of myelin basic protein and virus: A mechanism for autoimmunity. Science 230:1043, 198Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Richard A. Shubin
    • 1
  • Leslie P. Weiner
    • 1
  1. 1.Department of NeurologyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations