Immunoregulation in the Central Nervous System: Detection of Cytokines in Cerebrospinal Fluid

  • A. Fontana
  • K. Frei
  • P. Gallo
  • T. P. Leist
  • D. Leppert
  • U. V. Malipiero
  • D. Nadal


To initiate an immune response after recognition of antigen presented in the context of class II antigens of the major histocompatibility complex (MHC) on macrophages, dendritic cells or B cells, T helper cells become activated. This process involves direct cell-cell contact mediated by adhesion reactions, eg, between the lymphocyte function-associated antigen-one (LFA-1) on T cells and its ligand, the intercellular adhesion molecule-1 (ICAM-l) on antigen presenter cells. This allows the triggering of the T cells by binding of antigen to the T cell antigen receptor/CD3 complex which transduces antigen-specific extracellular stimuli across the plasma membrane, generating intracellular signals. These events render T cells competent to receive progression signals to enter from G1 the S phase, a process mediated by interleukin-2 binding to its receptor. In addition to direct cell-cell contacts, soluble factors released by lymphocytes, monocytes-macrophages or by cells not belonging to the immune system (eg, keratinocytes or fibroblasts) are also involved in the maturation, growth and activation of the cellular elements of the immune system. Provided their synthesis by parenchymal cells of different organs, cytokines, polypeptide mediators that transmit signals from one cell to another, may propagate local expansion and activation of lymphocytes having infiltrated the tissue through the vessel wall. In the brain, T cell infiltrates can be observed mainly in viral diseases and multiple sclerosis.


Multiple Sclerosis Major Histocompatibility Complex Class Bacterial Meningitis Visceral Leishmaniasis veSicular Stomatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A Fontana, K. Frei, S. Bodmer, and E. Hofer, Immune-mediated encephalitis: on the role of antigen-presenting cells in brain tissue, Immunol.Rev., 100:185–201 (1987).CrossRefGoogle Scholar
  2. 2.
    K. Frei, T.P. Leist, A. Meager, P. Gallo, D. Leppert, RM. Zinkernagel, and A. Fontana, Production of B cell stimulatory factor-2 and interferon in the central nervous system during viral meningitis and encephalitis. Evaluation in a murine model infection and in patients, J.Exp.Med., 168:449–453 (1988).CrossRefGoogle Scholar
  3. 3.
    P. Lebon, B. Boutin, O. Dulac, G. Ponsot, and M. Arthuis, Interferon γ in acute and subacute encephalitis, Br.Med.J., 296:9–11 (1988).CrossRefGoogle Scholar
  4. 4.
    R L. Hirsh, H.S. Panitch, and K.P. Johnson, Lymphocytes from multiple sclerosis patients produce elevated levels of gamma interferon in vitro, J.Clin.Immunol., 5:386–389 (1985).CrossRefGoogle Scholar
  5. 5.
    P. Lebon, E. Schuller, J.-D. Degos, O. Lyon-Caen, and G. Ponsot, CSF alpha and gamma interferons in acute and subacute encephalitis and multiple sclerosis: comparative study, in: ‘Cellular and Humoral Immunological Components of Cerebrospinal Fluid in Multiple Sclerosis,’ A. Lowenthal, J. Raus, eds., Plenum Publishing Corporation, pp. 429–436 (1987).Google Scholar
  6. 6.
    T. R. Moeneh and D.E. Griffin, Immunocytochemical identification and quantitation of the mononuclear cells in the cerebrospinal fluid, meninges, and brain during acute viral meningoecephalitis, J.Exp Med., 159:77–82, (1984).CrossRefGoogle Scholar
  7. 7.
    U. Traugott, E. Shevach, J. Chiba, S.H. Stone, and C.S. Raine, Acute experimental autoimmune encephalomyelitis: T- and B-cell distribution within the target organ, Cell Immunol., 70:345–356 (1982).CrossRefGoogle Scholar
  8. 8.
    W. W. Tourtellotte, and B.I. Ma, Multiple sclerosis — the blood-brain-barrier and the measurement of de novo central nervous system IgG synthesis, Neurology, 28:76–83 (1978).Google Scholar
  9. 9.
    B Vandvik, and E. Norrby, Oligoclonal IgG antibody response in the central nervous system to different measles virus antigens in subacute sclerosing panecephalitis, Proc. Natl. Acad. Sci. USA, 70: 1060–1063 (1973).CrossRefGoogle Scholar
  10. 10.
    H. Link, Cerebrospinal fluid in immunological CNS diseases, in: ‘Clinical Neuroimmunology,’ J.A. Aarli, W.M.H. Behan and P.O. Behan, eds., Blackwell Scientific Publications, Oxford, pp. 444–466 (1987).Google Scholar
  11. 11.
    T. J. Kishimoto, B-cell stimulatory factors: molecular structure, biological function, and regulation of expression, Clin.Immunol., 7:343–355 (1987).CrossRefGoogle Scholar
  12. 12.
    J. Van Snick, S. Cayphas, A. Vink, C. Uyttenhove, P.G. Coulie, M.R. Rubira and R.J. Simpson, Purification and NH2-terminal amino acid sequence of a T-cell-derived lymphokine with growth factor activity for B-cell hybridomas, Proc. Natl Acad. Sci. USA, 83:9679–9683 (1986).CrossRefGoogle Scholar
  13. 13.
    J. Content, L. De Wit, P. Poupart, G. Opdenakker, J. Van Damme, and A. Billiau, Induction of a 26 kDa protein mRNA in human cells treated with an interleukin-l-related, leukocyte derived factor, Eur.J.Biochem, 152:253–257 (1985).CrossRefGoogle Scholar
  14. 14.
    A Zilberstem, R. Ruggieri, J.H. Korn, and M. Revel, Structure and expression of cDNA and genes for human interferon 2, a distinct species inducible by growth-stimulatory cytokines, EMBO J., 5:2529–2537, (1986).Google Scholar
  15. 15.
    H. Kikutani, T. Taga, S. Akira, H. Kishi, Y. Miki, O. Saiki, Y. Yamamura, and T. Kishimoto, Effects of B cell differentiation factor on biosynthesis and secretion of immunoglobulin molecules in human B cell lines, J.Immunol., 134:990–995 (1985).Google Scholar
  16. 16.
    A Muraguchi, T. Hirano, B. Tang, T. Matsuda, Y. Horii, K. Nakajima, and T. Kishimoto, The essential role of B cell stimulatory factor 2 for the terminal differentiation of B cells, J.Exp.Med., 167:332–244 (1988).CrossRefGoogle Scholar
  17. 17.
    R Ceredig, J.E. Allan, Z. Tabi, F. Lynch, and P.C. Doherty, Phenotypic analysis of the inflammatory exudate in murine lymphocytic choriomeningitis, J.ExpMed., 165:1539–1551 (1987).CrossRefGoogle Scholar
  18. 18.
    J. Baenziger, H. hengartner, R.M. Zinkernagel, and G.A. Cole, Induction or prevention of immunopathological disease by cloned cytotoxic T cell lines specific for lymphocytic choriomeningitis virus, Eur.J.Immunol., 16:387–392 (1986).CrossRefGoogle Scholar
  19. 19.
    A Fontana, K. Frei, U.V. Malipiero, T.P. Leist, RM. Zinkernagel, and M.E. Schwab, On the cellular source and function of B cell stimulatory factor 2/interleukin 6 produced in the central nervous system in viral diseases, (submitted).Google Scholar
  20. 20.
    P. B. Sehgal, D.C. Helfgott, U. Santhanam, S.B. Tatter, R.H. Clarick, J. Ghrayed, and L.T. May, Regulations of the acute phase and immune responses in viral disease. Enhanced expression of the 2-interferon/hepatocyte-stimulating factor/interleukin-6 gene in virus infected human fibroblasts, J.Exp.Med., 167:1051–1956 (1988).CrossRefGoogle Scholar
  21. 21.
    F. A Houssiau, K. Bukasa, C.J.M. Sindic, J.Van Damme, and J.Van Snick, Elevated levels of the 26 K human hybridoma growth factor (interleukin-6) in cerebrospinal fluid of patients with acute infection of the central nervous system, Clin.Exp.Immunol., 71:320–323 (1988).Google Scholar
  22. 22.
    L J. Old, Tumor necrosis factor, Scientific Am., 43–49 (1988).Google Scholar
  23. 23.
    B. Beutler, and A. Cerami Caehectin: more than a tumor necrosis factor, N.Engl.J.Med., 316:379–385 (1987).Google Scholar
  24. 24.
    D. S. Robbins, Y. Shirazi, B.E. Drysdale, A Lieberman, H.S. Shin, and M.L. Shin, Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes, J.Immunol., 139:2593–2597 (1987).Google Scholar
  25. 25.
    P. Scuderi, K.E. Sterling, K.S. Lam, P.R. Finley, K.J. Ryan, C.G. Ray, E. Petersen, D.J. Slymen and S.E. Salmon, Raised serum levels of tumor necrosis factor in parasitic infections, Lancet, 2:1364–1365 (1986).CrossRefGoogle Scholar
  26. 26.
    A Waage, A. Halstensen and T. Espevik, Association between tumor necrosis factor in serum and fatal outcome in patients with meningococcal disease, Lancet 1, 355–357 (1987).CrossRefGoogle Scholar
  27. 27.
    E. P. Leist, K. Frei, S. Kam-Hansen, R. Zinkernagel, and A Fontana, Tumor necrosis factor α in cerebrospinal fluid during bacterial, but not viral meningitis, J.Exp.Med., 167:1743–1748 (1988).CrossRefGoogle Scholar
  28. 28.
    P. Gallo, D. Kaegi, K. Frei, D. Leppert, D. Nadal, H. Lamche, C. Mueller, T. Leist, H. Hengartner, and A. Fontana, Production of tumor necrosis factor α in the central nervous system in infectious meningitis, (submitted).Google Scholar
  29. 29.
    G A Dinarello, An update on human interleukin-1: from molecular biology to clinical relevance, J.Clin.Immunol., 5:287–297 (1985).CrossRefGoogle Scholar
  30. 30.
    C. A Dinarello and H.A Bernheim, Ability of human leukocytic pyrogen to stimulate brain prostaglandin synthesis in vitro, J.Neurochem., 37:702–708 (1981).CrossRefGoogle Scholar
  31. 31.
    J. M. Krueger, J. Walter, C.A. Dinarello, S.M. Wolffand L. Chedid, Sleeppromoting effects of endogenous pyrogen (interleukin-1), Am.J.Physiol., 246:R994-R999 (1984).Google Scholar
  32. 32.
    I. Tobler, A.A. Borbély, M. Schwyzer, and A Fontana, Interleukin-1 derived from astrocytes enhances slow wave activity in sleep EEG of rat, Eur.J.Pharmacol., 104:191–192 (1984).CrossRefGoogle Scholar
  33. 33.
    M. S. Ahmed, J. Leanos-Q, C.A. Cinarello and C.M. Blatteis, Interleukin-1 reduces opiod binding in guinea pig brain, Peptides 6, 1149–1154 (1985).CrossRefGoogle Scholar
  34. 34.
    F. Berkenbozch, J. van Oers, A. del Rey, F. Tilders, and H. Besedovsky, Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1., Science 238:524–526 (1987).CrossRefGoogle Scholar
  35. 35.
    D. Giulian and L.B. Lachman, Interleukin-1 stimulation of astroglial proliferation after brain injury, Science, 228:497–499 (1985).CrossRefGoogle Scholar
  36. 36.
    W L. Farrar, P.L. Kilian, M.R Ruff, J.M. hill, and C.B. Pert, Visualization and characterization of interleukin-1 receptors in brain, J.Immunol., 139:459–463 (1987).Google Scholar
  37. 37.
    A Fontana, F. Kristensen, R. Dubs, D. Gemsa, and E. Weber, Production of prostaglandin E and an interleukin 1 like factor by cultured astrocytes and C-6 glioma cells, J.Immunol., 129:2413–2419 (1982).Google Scholar
  38. 38.
    A Fontana, E. Weber and J.M. Dayer, Synthesis of interleukin-1/endogenous pyrogen in the brain of endotoxin-treated mice: a step in fever induction? J.Immunol., 133:1696–1698 (1984).Google Scholar
  39. 39.
    M. Nieto-Sampedro and M.A. Berman, Interleukin-1-like activity in rat brain: sources, targets, and effects of injury, J.Neuro science Res., 17:214–219 (1987).CrossRefGoogle Scholar
  40. 40.
    R M. Gorczynski, and E.J. Keystone, Interleukin-1-like activity in human cerebrospinal fluid, Immunol.Lett. 13., 231–235 (1986).CrossRefGoogle Scholar
  41. 41.
    G J. McClain, D. Cohen, L. Ott, C.A Dinarello and B. Young, Ventricular fluid interleukin-1 activity in patients with head injury, J.Lab.Clin.Med., 110:48–54 (1987).Google Scholar
  42. 42.
    J. A Symons, RV. Bundick, AJ. Suckling and M.G. Rumsby, Cerebrospinal fluid interleukin-1 like activity during chronic relapsing experimental allergic encephalomyelitis, Clin.exp.Immunol., 68:648–654 (1987).Google Scholar
  43. 43.
    F. Coceani, J. Lees, and C.A Dinarello, Occurrence of interleukin-1 in cerebrospinal fluid of the conscious cat, Brain Res., 446:245–250 (1988).CrossRefGoogle Scholar
  44. 44.
    S. C. Saris, S.A. Rosenberg, R.B. Friedman, J.T. Rubin, D. Barba and E.H. Oldfield, Penetration of recombinant interleukin-2 across the blood-cerebrospinal fluid barrier, J.Neurosurg., 69:29–34 (1988).CrossRefGoogle Scholar
  45. 45.
    G Wyttenhove, P.G. Coulie, and J.T. van Snick, cell growth and differentiation induced by interleukin-HP1/IL-6, the murine hybridoma/ plasmocytoma growth factor, J.ExpMed., 167:1417–1427 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • A. Fontana
    • 1
  • K. Frei
    • 1
  • P. Gallo
    • 1
  • T. P. Leist
    • 1
  • D. Leppert
    • 1
  • U. V. Malipiero
    • 1
  • D. Nadal
    • 1
  1. 1.Section of Clinical ImmunologyUniversity HospitalZürichSwitzerland

Personalised recommendations