Advertisement

Incorporation of Square-Planar Metal Binding Sites into Protein Polymeric Structures

  • Eric C. Long
  • Paula D. Eason
  • Daniel F. Shullenberger
Chapter

Abstract

The ability to specifically incorporate artificial transition metal binding sites into proteins has led to the development of novel biomolecules with unique chemical and physical properties.1 Recent experiments demonstrate that such “engineered” sites of metal ion binding can, for example, assist in the conformational stabilization and assembly of polypeptides2 or serve to regulate enzymatic activity.3 In addition, the specific incorporation of redox-active metal ions, capable of generating oxidizing equivalents competent to cleave the polymeric backbone of proteins or nucleic acids, has facilitated investigations of protein three-dimensional structure,4 folding,5 and involvement in macromolecular binding interactions through affinity cleavage experiments (e.g., with nucleic acids).6 A growing appreciation of the utility of artificial metal binding domains has therefore accelerated the development of new methodologies which permit their efficient and specific installation within the tertiary structures of proteins.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, F. H.; Haymore, B. L. Science 1991, 252, 1796.CrossRefGoogle Scholar
  2. 2.
    (a) Hellinga, H. M.; Caradonna, J. P.; Richards, F. M. J. Mol. Biol 1991, 222, 787. (b) Ghadiri, M. R.; Choi, C. J. Am. Chem. Soc. 1990,112, 1630. (c) Ruan, F.; Chen, Y.; Hopkins, P. B. J. Am. Chem. Soc. 1990,112, 9403. (d) Lieberman, M.; Sasaki, T. J. Am. Chem. Soc. 1991,113, 1470. (e) Ghadiri, M. R.; Soares, C.; Choi, C. J. Am. Chem. Soc. 1992,114,4000. (f) Imperiali, B.; Fisher, S. L. J. Am. Chem. Soc. 1991,113, 8527. (g) Merkle, D. L.; Schmidt, M. H.; Berg, J. M. J. Am. Chem. Soc. 1991,113, 5450; (h) Muheim, A.; Todd, R. J.; Casimiro, D. R.; Gray, H. B.; Arnold, F. H. J. Am. Chem. Soc. 1993,115, 5312. (i) Handel, T.; DeGrado, W. F. J. Am. Chem. Soc. 1990,112, 6710.Google Scholar
  3. 3.
    Higaki, J. N.; Haymore, B. L.; Chen, S.; Fletterick, R. J.; Craik, C. S. Biochemistry 1990, 29, 8582.CrossRefGoogle Scholar
  4. 4.
    Rana, T. M.; Meares, C. F. Proc. Natl. Acad. Sci. USA 1991, 88, 10578. (b) Rana, T. M.; Meares, C. F. J. Am. Chem. Soc. 1990,112, 2457. (c) Rana, T. M.; Meares, C. F. J. Am. Chem. Soc. 1991,113, 1859.Google Scholar
  5. 5.
    Ermacora, M. R.; Delfino, J. M.; Cuenoud, B.; Schepartz, A.; Fox, R. 0. Proc. Natl. Acad. Sci. USA 1992, 89, 6383. (b) Platis, I. E.; Ermacora, M. R.; Fox, R. 0. Biochemistry 1993, 32, 12761.Google Scholar
  6. 6.
    Dervan, P. B. Methods Enzymol. 1991,208,497.CrossRefGoogle Scholar
  7. 7.
    (a) Mack, D. P.; Iverson, B. L.; Dervan, P. D. J. Am. Chem. Soc. 1988,110, i (b) Mack, D. P.; Dervan, P. B. J. Am. Chem. Soc. 1990, 772, 4604. (c) Mack, l P.; Dervan, P. B. Biochemistry 1992, 31, 9399.Google Scholar
  8. 8.
    Shullenberger, D. F.; Long, E. C. Bioorg. Med. Chem. Lett. 1993, 3, 333.CrossRefGoogle Scholar
  9. 9.
    Nagaoka, M.; Hagihara, M.; Kuwahara, J.; Sugiura, Y. J. Am. Chem. Soc. 1994, 116, 4085.CrossRefGoogle Scholar
  10. 10.
    (a) Camerman, N.; Camerman, A.; Sarkar, B. Can. J. Chem. 1976, 54, 1309. (b) Lau, S.-J.; Kruck, T. P. A.; Sarkar, B. J. Biol. Chem. 1974,249, 5878.Google Scholar
  11. 11.
    (a) Bossu, F. P.; Margerum, D. W. Inorg. Chem. 1977, 16, 1210. (b) Bannister, C. E.; Raycheba, J. M. T.; Margerum, D. W. Inorg. Chem. 1982, 27, 1106. (c) Sakurai, T.; Nakahara, A. Inorg. Chem. 1980,19, 847.Google Scholar
  12. 12.
    (a) Chiou, S.-H.; Chang, W.-C.; Jou, Y.-S.; Chung, H.-M. M.; Lo, T.-B. J. Biochem. 1985, 98, 1723. (b) Chiou, S.-H. J. Biochem. 1983, 94, 1259.Google Scholar
  13. 13.
    Cuenoud, B.; Tarasow, T. M.; Schepartz, A. Tetrahedron Lett. 1992, 33, 895.CrossRefGoogle Scholar
  14. 14.
    Shullenberger, D. F.; Eason, P. D.; Long, E. C. J. Am. Chem. Soc. 1993,115, 11038.CrossRefGoogle Scholar
  15. 15.
    Stewart, J. M.; Young, J. D. Solid-Phase Peptide Synthesis’, Pierce Chemical Co.; Rockford II, 1984.’ 16. (a) Lau, S.-J.; Laussac, J.-P.; Sarkar, B. Biochem. J. 1989, 257, 745. (b) Iyer, K. S.; Lau, S.-J.; Laurie, S. H.; Sarkar, B. Biochem. J. 1978,169, 61. (c) Rakhit, G.; Sarkar, B. J. Inorg. Biochem. 1981, 75, 233.Google Scholar
  16. 17.
    Chen, X.; Rokita, S. E.; Burrows, C. J. J. Am. Chem. Soc. 1991,113, 5884.CrossRefGoogle Scholar
  17. 18.
    Wuttke, D. S.; Gray, H. B.; Fisher, S. L.; Imperiali, B. J. Am. Chem. Soc. 1993, 775, 8455.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Eric C. Long
    • 1
  • Paula D. Eason
    • 1
  • Daniel F. Shullenberger
    • 1
  1. 1.Department of ChemistryIndiana University-Purdue University IndianapolisIndianapolisUSA

Personalised recommendations