Advertisement

Model Systems and Structure, Function and Reactivity Relationships in Transition Metal-Containing Biopolymers

  • Geoffrey B. Jameson
Chapter

Abstract

Metal complexes are at the heart of many biological processes. Remarkably few structural motifs are used by Nature to accomplish such diverse functions as oxidation and reduction, hydrolysis and condensation, transport of electrons and small molecules, and transformations of chemical energy into electrical and mechanical energy. One of the challenges of bioinorganic chemistry is to relate, for a particular structural motif such as a heme group, the structural features of not only the metal center but also the surroundings to the function and reactivity of the metalloprotein. While much effort has been devoted to relating the stereochemistry of the active site of metalloproteins to thermodynamic aspects of function, there is increasing interest in the stereochemical basis of kinetic aspects of protein function, such as rates of electron transfer, rates of ligand binding and reaction mechanisms for enzymes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. (a)
    For a group of reviews on metal-dioxygen chemistry, see: Chem. Rev. 94(3): 1994.Google Scholar
  2. (b).
    For a recent textbook on aspects of bioinorganic chemistry, see for example: “Bioinorganic Chemistry,” I. Bertini, H.B. Gray, SJ. Lippard, and J.S. Valentine, eds., University Science Books, Mill Valley, CA (1994).Google Scholar
  3. (c).
    For a recent textbook on principles of bioinorganic chemistry, see: J. Berg and S J. Lippard, “Principles of Bioinorganic Chemistry,” University Science Books, Mill Valley, CA (1994).Google Scholar
  4. (d).
    For a group of reviews concentrating on structure and function of metalloproteins, see for example:Adv. Protein Chem. 42: (1991).Google Scholar
  5. 2.
    G.B. Jameson and J.A. Ibers, Biological and synthetic dioxygen carriers, in: “Bioinorganic Chemistry,” I. Bertini, H.B. Gray, S.J. Lippard, and J.S. Valentine, eds., University Science Books, Mill Valley, CA, pp 167–252 (1994).Google Scholar
  6. 3. (a)
    J.S. Valentine, Dioxygen reactions, in: “Bioinorganic Chemistry,” I. Bertini, H.B. Gray, S.J. Lippard, and J.S. Valentine, eds., University Science Books, Mill Valley, CA, pp 253–313, (1994).Google Scholar
  7. (b).
    See also ref. 96.Google Scholar
  8. 4.
    M. Momenteau and C.A. Reed, Chem. Rev. 94: 659–698 (1994).CrossRefGoogle Scholar
  9. 5. (a)
    B.A. Springer, S.S. Sligar, J.S. Olson, and G.N. Phillips Jr., Chem. Rev. 94: 699–714 (1994).CrossRefGoogle Scholar
  10. (b).
    T. Li, M.L. Quillin, and G.N. Phillips Jr., Biochemistry 33: 1433–1446 (1994).CrossRefGoogle Scholar
  11. (c).
    T.E. Carver, R.E. Brantley Jr., E.W. Singletom, R.M. Arduini, M.L. Quilin, G.N. Phillips, and J.S. Olson, J. Biol. Chem. 267: 14443–14450.Google Scholar
  12. 6. (a)
    G.B. Jameson and J.A. Ibers, Comments Inorg. Chem. 2: 97–226 (1993).CrossRefGoogle Scholar
  13. (b).
    G.B. Jameson, W.T. Robinson, and J.A. Ibers, Structural results for model compounds of significance in hemoglobin chemistry, in: “Hemoglobin and Oxygen Binding,” C. Ho, ed., Elsevier North Holland Inc., Amsterdam, pp 25–35 (1982).Google Scholar
  14. 7. (a)
    K. Kim and J.A. Ibers,. J. Am. Chem. Soc. 113: 6077–6081(1991).CrossRefGoogle Scholar
  15. (b).
    K. Kim, J. Fettinger, J.L. Sessler, M. Cyr, J. Hugdahl, J.P. Collman, and J.A. Ibers, J. Am. Chem. Soc. 111: 403–405 (1989).CrossRefGoogle Scholar
  16. 8.
    L. Que Jr. and A.E. True, Prog. Inorg. Chem. 38: 98–200 (1990).Google Scholar
  17. 9. (a)
    J.B. Vincent, G.L. Olivier-Lilley, and B.A. Averill, Chem. Rev. 90: 1447–1467(1990).CrossRefGoogle Scholar
  18. (b).
    D.M. Kurtz Jr. Chem. Rev. 90: 585–606 (1990).CrossRefGoogle Scholar
  19. 10. (a)
    E.T. Adman, Adv. Protein Chem. 42: 144–197 (1991).Google Scholar
  20. (b).
    K.D. Karlin and Y. Gultneh, Prog. Inorg. Chem. 35: 219–327 (1987).CrossRefGoogle Scholar
  21. (c).
    B.P. Murray, Coord. Chem. Rev. 124: 63–105 (1993).CrossRefGoogle Scholar
  22. (d).
    E.I. Solomon, F. Tuczek, D.E. Root, and C.A. Brown, Chem. Rev. 94: 827–856 (1994).CrossRefGoogle Scholar
  23. 11.
    G.R. Moore and G.W. Pettigrew, “Cytochromes c: Evolutionary, Structural and Physicochemical Aspects,” Springer-Verlag, Berlin (1990).”CrossRefGoogle Scholar
  24. 12. (a)
    E.I. Steifel and G.N. George, Ferrodoxins, hydrogenases and nitrogenases: metal-sulfide proteins, in:’’Bioinorganic Chemistry,’’ I. Bertini, H.B. Gray, S.J. Lippard, and J.S. Valentine, eds., University Science Books: Mill Valley, CA, pp 253–313 (1993).Google Scholar
  25. (b).
    R.H. Holm, S. Ciurli, and J.A. Weugel, Prog. Inorg. Chem. 38: 1–74 (1990).CrossRefGoogle Scholar
  26. 13.
    J.B. Howard and D.C. Rees, Adv. Protein Chem. 42: 199–280 (1991).CrossRefGoogle Scholar
  27. 14. (a)
    A.L. Feig and S.J. Lippard, Chem. Rev. 94: 759–805 (1994).CrossRefGoogle Scholar
  28. (b).
    A.C. Rosenzweig and S.J. Lippard, Acc. Chem. Res. 27: 229–236 (1994).CrossRefGoogle Scholar
  29. 15. (a)
    R.E. Stenkamp, Chem. Rev. 94: 715–726 (1994).CrossRefGoogle Scholar
  30. (b).
    S. Sheriff, W.A. Hendrickson, and J.L. Smith, J. Mol. Biol. 197: 273–296 (1987).CrossRefGoogle Scholar
  31. 16.
    S.J. Lippard, Angew. Chem., Int. Ed. Eng. 27: 344–361 (1988).CrossRefGoogle Scholar
  32. 17.
    Z. Wang, L.-J. Ming, L. Que Jr., J.B. Vincent, M.W. Crowder, and B.A. Averill, Biochemistry 31: 5263–5268 (1992).CrossRefGoogle Scholar
  33. 18. (a)
    P. Nordlund and H. Eklund, J. Mol. Biol. 232: 123–164 (1993).CrossRefGoogle Scholar
  34. (b).
    P. Nordlund, B.-M. Sjöberg, and H. Eklund, Nature 345: 593–598 (1990).CrossRefGoogle Scholar
  35. 19.
    A.C. Rosenzweig, C.A. Frederick, S.J. Lippard, and P. Nordlund, Nature 366: 537–543 (1993).CrossRefGoogle Scholar
  36. 20. (a)
    J. Kuriyan, S. Wilz, M. Karplus, and G.A. Petsko, J. Mol. Biol. 192: 133–154 (1986).CrossRefGoogle Scholar
  37. (b).
    X. Cheng and B.P. Shoenbom, J. Mol. Biol. 220: 381–399 (1991).CrossRefGoogle Scholar
  38. (c).
    L. Powers, J.L. Sessler, G.L. Woolery, and B. Chance, Biochemistry 23: 5519–5523 (1984).CrossRefGoogle Scholar
  39. (d).
    A. Bianconi, A. Congiu-Castellano, P.J. Durham, S.S. Hasnain, and S. Phillips, Nature, 318: 685–687 (1985).CrossRefGoogle Scholar
  40. (e).
    Many biochemistry textbooks show Fe-CO moieties as bent as Fe-00 moieties (120°).Google Scholar
  41. 21. (a)
    K.S. Murray, Coord. Chem. Rev. 12: 1–35 (1974).CrossRefGoogle Scholar
  42. (b).
    J. Sanders-Loehr, Binuclear iron proteins, in: “Iron Carriers and Iron Proteins,” T.M. Loehr, ed., VCH, New York, Vol. 5, pp 373–476 (1989).Google Scholar
  43. 22.
    I.M. Klotz, and D.M. Kurtz Jr., Acc. Chem. Res. 17: 16–22 (1984).CrossRefGoogle Scholar
  44. 23.
    D.E. Wilcox, J.R. Long, and E.I. Solomon, J. Am. Chem. Soc. 106: 2186–2194 (1984).CrossRefGoogle Scholar
  45. 24. (a)
    N. Kitajima and Y. Moro-oka, Chem. Rev. 94: 737–757 (1994).CrossRefGoogle Scholar
  46. (b).
    N. Kitajima, K. Fujisawa, C. Fujimoto, Y. Moro-oka, S. Hashimoto, T. Kitagawa, K. Toriumi, K. Tatsumi, and A. Nakamura, J. Am. Chem. Soc. 114: 1277–1291 (1992).CrossRefGoogle Scholar
  47. 25.
    K.A. Magnus, H. Ton-Hat, and J.E. Carpenter, Chem. Rev. 94: 727–735 (1994).CrossRefGoogle Scholar
  48. 26.
    G.B. Jameson, F.S. Molinaro, J.A. Ibers, J.P. Collman, J.I. Brauman, E. Rose, and K.S. Suslick, J. Am. Chem. Soc. 102: 3224–3237 (1980).CrossRefGoogle Scholar
  49. 27. (a)
    J.H. Wang, J. Am. Chem. Soc. 80: 3168–3169 (1958).CrossRefGoogle Scholar
  50. (b).
    T.G. Traylor, Acc. Chem. Res. 14: 102–109 (1981).CrossRefGoogle Scholar
  51. 28. (a)
    D.L. Anderson, D.J. Weschler, and F. Basolo, J. Am. Chem. Soc. 96: 5599–5600 (1974).CrossRefGoogle Scholar
  52. (b).
    G.C. Wagner and R.J. Kassner, J. Am. Chem. Soc. 96: 5593–5595 (1974).Google Scholar
  53. (c).
    W.S. Brinigar, C.K. Chang, J. Geibel, and T.G. Traylor, J. Am. Chem. Soc. 96: 5597–5599 1974).CrossRefGoogle Scholar
  54. (d).
    J. Almog, J.E. Baldwin, R.L. Dyer, J. Huff, and C.J. Wilkerson, J. Am. Chem. Soc. 96: 5600– 5601 (1974).Google Scholar
  55. 29.
    J.P. Collman, R.R. Gagne, T.R. Halbert, J.C. Marchon, and C.A. Reed, J. Am. Chem. Soc. 95: 7868– 7870 (1973).Google Scholar
  56. 30.
    (a) J.B. Weiss, Nature 202: 83–84 (1964); ibid. 203: 183 (1964).Google Scholar
  57. (b).
    L. Pauling, Nature 203: 182–183 (1964).CrossRefGoogle Scholar
  58. (c).
    H.B. Gray, Adv. Chem. Ser. 100: 365–389 (1971).CrossRefGoogle Scholar
  59. 31.
    M.F. Perutz, Nature 228: 726–739 (1970).CrossRefGoogle Scholar
  60. 32.
    B.M. Hoffman, and D.H. Petering, Proc. Natl. Acad. Sci, USA 67: 637–643 (1970).CrossRefGoogle Scholar
  61. 33.
    E.C. Niederhoffer, J.H. Timmons, and A.E. Martell, Chem. Rev. 84: 137–203 (1984).CrossRefGoogle Scholar
  62. 34.
    G.A. Rodley and W.T. Robinson, Nature 235: 438–439 (1972).CrossRefGoogle Scholar
  63. 35. (a)
    J.P. Collman, R.R. Gagne, C.A. Reed, W.T. Robinson, and G.A. Rodley, Proc. Natl. Acad. Sci,USA 71: 1326–1329 (1974).CrossRefGoogle Scholar
  64. (b).
    G.B. Jameson, G.A. Rodley, W.T. Robinson, R.R. Gagne, C.A. Reed, and J.P. Collman, Inorg. Chem. 17: 850–857 (1978).CrossRefGoogle Scholar
  65. 36.
    G.B. Jameson, F.S. Molinaro, J.A. Ibers, J.P. Collman, J.I. Brauman, E. Rose, and K.S. Suslick, J. Am. Chem. Soc. 100: 6769–6770 (1978).CrossRefGoogle Scholar
  66. 37.
    S.E.V. Phillips, Nature 273: 247–248 (1978).CrossRefGoogle Scholar
  67. 38.
    W. Steigemann and E. Weber, J. Mol. Biol, 127: 309–338 (1979).CrossRefGoogle Scholar
  68. 39.
    B. Shaanan, B. J. Mol. Biol. 171: 31–59 (1983).Google Scholar
  69. 40.
    A Brzozowski, Z. Derewenda, E. Dodson, G. Dodson, M. Grabowski, R. Liddington, T. Skarźyński, and D. Vallely, Nature 307: 74–76 (1984).CrossRefGoogle Scholar
  70. 41. (a)
    A. Araone, P. Rogers, N.V. Blough, J.L. McGourty, and B.M. Hoffman, J. Mol. Biol. 188: 693– 706 (1986).CrossRefGoogle Scholar
  71. (b).
    B. Luisi, B. Liddington, G. Fermi, and N. Shibayama, J. Mol. Biol. 214: 7–14 (1990).CrossRefGoogle Scholar
  72. (c).
    R. Liddington, Z. Derenda, G. Dodson, and D. Harris, Nature 331: 725–728 (1988).CrossRefGoogle Scholar
  73. 42. (a)
    I. Schlichting, J. Berendzen, G.N. Phillips Jr., and R.M. Sweet, Nature 371: 808–812 (1994).CrossRefGoogle Scholar
  74. (b).
    T.-Y. Teng, V. Srajer, and K. Moffat, Nature Struct. Biol. 1: 701–705 (1994).CrossRefGoogle Scholar
  75. 43.
    S.-M. Peng and J.A. Ibers, J. Am. Chem. Soc. 98: 8032–8036 (1976).CrossRefGoogle Scholar
  76. 44.
    J.A. Ibers and R.H. Holm, Science 209: 223–235 (1980).CrossRefGoogle Scholar
  77. 45.
    S.G. Boxer, Nature Struct. Biol. 1: 226 (1994).CrossRefGoogle Scholar
  78. 46.
    W.R. Scheidt and Y.J. Lee, Structure and Bonding, 1987: 1–70 (1987).CrossRefGoogle Scholar
  79. 47.
    I. Bytheway and M.B. Hall, Chem. Rev. 94: 639–658 (1994).CrossRefGoogle Scholar
  80. 48. (a)
    J.P. Collman, R.R. Gagne, H.B. Gray, and J.W. Hare, J. Am. Chem. Soc. 96: 6522–6224 (1974).CrossRefGoogle Scholar
  81. (b).
    A. Dedieu, M.-M. Rohmer, M. Benard, and A. Veillard, J. Am. Chem. Soc. 98: 3717–3718 (1976).CrossRefGoogle Scholar
  82. (c).
    M. Cerdonio, A. Congiu-Castellano, F. Mogno, B. Pispisa, G.L. Romani, and S.Vitale, Proc. Natl. Acad. Sci, USA 74: 398–400 (1977).CrossRefGoogle Scholar
  83. (d).
    L. Pauling and C.D. Coryell, Proc. Natl. Acad. Sci, USA 22: 210–216 (1936).CrossRefGoogle Scholar
  84. (e).
    Z.S. Herman and G.H. Loew, J. Am. Chem. Soc. 102: 1815–1821 (1980).CrossRefGoogle Scholar
  85. (f) A. Dedieu, M.-M. Rohmer, and A. Veillard, in: “Metal Ligand Interactions in Organic Chemistry and Biochemistry,” Reidel, part 2 pp 101–130 (1977).Google Scholar
  86. (g).
    W.A. Goddard III and B.D. Olafson, Ann. N.Y. Acad. Sci. 367: 419–433 (1981).CrossRefGoogle Scholar
  87. (h).
    L. Pauling, Proc. Natl. Acad. Sci, USA 74: 2612 (1977s).CrossRefGoogle Scholar
  88. (i).
    B. Boso, P.G.Debrunner, G.C. Wagner, and T. Inubushi, Biochim. Biophys. Acta 791: 244–251 (1984).CrossRefGoogle Scholar
  89. (j).
    J.S. Philo, U. Dreyer, and T.M. Schuster, Biochemistry 23: 865–873 (1984).CrossRefGoogle Scholar
  90. (k).
    J.P. Savicki, G. Lang, and M Ikeda-Saito, Proc. Natl. Acad. Sci, USA 81: 5417–5419 (1984).CrossRefGoogle Scholar
  91. (i).
    M. Cerdonio, S. Morante, D. Torresani, S. Vitale, A. De Young, R.W. Noble, Proc. Natl. Acad. Sci, USA 82: 102–103 (1985).CrossRefGoogle Scholar
  92. 49. (a)
    J.O. Alben, W.H. Fuchsman, C.A. Beaudreau, and W.S. Caughey, Biochemistry 1: 624–635 1968).Google Scholar
  93. (b).
    G.S. Hammond and C.-S. Wu, Adv. Chem. Ser. 1: 186–207 (1968).CrossRefGoogle Scholar
  94. (c).
    J.P. Collman, Acc.Chem. Res. 10: 265–272 (1977).CrossRefGoogle Scholar
  95. 50. (a)
    D.-H. Chin, G.N. La Mar, and A.L. Balch, J. Am. Chem. Soc. 102: 4344–4350 (1980).CrossRefGoogle Scholar
  96. (b).
    I.R Paeng, H. Shiwaku, and K. Nakamoto, J. Am. Chem. Soc. 110: 1995–1996 (1988).CrossRefGoogle Scholar
  97. 51.
    R.E. Brantley Jr., S.J. Smerdon, A.J. Wilkinson, E.W. Singleton, and J.S. Olson, J. Biol. Chem.268: 6995–7010 (1993).Google Scholar
  98. 52. (a)
    Q.H. Gibson and M.H. Smith, Proc. Roy. Soc. London, Ser B. 163: 206–214 (1965).CrossRefGoogle Scholar
  99. (b).
    T. Okazaki and J.B. Wittenberg, Biochim. Biophys. Acta 111: 503 (1965).CrossRefGoogle Scholar
  100. (c).
    A.P. Klock, J. Yang, F.S. Mathews, and D.E. Goldberg, J. Biol. Chem. 268: 17669–17671 (1993).Google Scholar
  101. 53.
    M. Ikeda-Saito, M.Brunori, and T. Yonetani, Biochim. Biophys. Acta 533: 173–180 (1978).CrossRefGoogle Scholar
  102. 54. (a)
    T. Imamura, A. Riggs, and Q.H. Gibson, J. Biol. Chem. 247: 521–526 (1972).Google Scholar
  103. (b).
    J.B.Wittenberg, C.A. Appleby, and B.A. Wittenberg, J. Biol. Chem. 247: 527–531 (1972s).Google Scholar
  104. (c).
    C.A. Appleby, Biochim. Biophys. Acta 60: 226(1962).CrossRefGoogle Scholar
  105. (d).
    J.B. Wittenberg, F.J. Bergersen, C.A. Appleby, and G.L. Turner, J. Biol. Chem. 249: 4057–4066 (1974).Google Scholar
  106. 55. (a)
    N. Alberding, R.H. Austin, K.W. Beeson, S.S. Chan, L. Eisenstein, H. Frauenfelder, and T.M. Nordlund, Science 192:1002–1004 (1976).CrossRefGoogle Scholar
  107. (b).
    S. Dasgupta and T.G. Spiro, Biochemistry 25: 5941–5948 (1986).CrossRefGoogle Scholar
  108. (c).
    M.R. Chance, J.L. Parkhurst, G.L. Woolery, and B. Chance, J. Biol. Chem. 261: 5689–5692 (1986).Google Scholar
  109. 56.
    G.B. Jameson and R.S. Drago, J. Am. Chem. Soc. 107: 3017–3020 (1985).CrossRefGoogle Scholar
  110. 57.
    D. Lavalette, C. Tétreau, M. Mispelter, M. Momenteau, and J.-M. Lhoste, Eur. J. Biochem. 145: 555–565 (1984).CrossRefGoogle Scholar
  111. 58. (a)
    M. Momenteau and D. Lavalette, J. Chem. Soc., Chem. Commun. 341–343 (1982)Google Scholar
  112. (b).
    J. Mispelter, M. Momenteau, D. Lavalette, and J.-M. Lhoste, J. Am. Chem. Soc. 105: 5165–5166 (1983).CrossRefGoogle Scholar
  113. (c).
    I.P. Gerothanassis, M. Momenteau, and B. Loock, J. Am. Chem. Soc. 111: 7006–7012 (1989).CrossRefGoogle Scholar
  114. 59. (a)
    K. Nagai, B. Luisi, D. Shih, G. Miyazaki, K. Imai, C. Poyart, A. De Young, L. Kwiatkowsky, R.W. Noble, S.-H. Lin, and N.-T. Yu, Nature 329: 858–860 (1987).CrossRefGoogle Scholar
  115. (b).
    J. S. Olson, A. J. Mathews, R. J. Rohlfs, B. A. Springer, K. D. Egeberg, S. G. Sligar, J. Tame, J.-P. Renaud, and K. Nagai, Nature 336: 265–266 (1988).CrossRefGoogle Scholar
  116. 60.
    M. Bolognesi, A. Coda, F. Frigerio, G. Gatti, P. Ascenzi, and M. Brunori, J. Mol. Biol. 213:621–625 (1990).CrossRefGoogle Scholar
  117. 61. (a)
    J.P. Collman, J.I. Brauman, B.L. Iveson, J.L. Sessler, J.M. Morris, and Q.H. Gibson, J. Am.Chem. Soc. 105: 3052–3064 (1983).CrossRefGoogle Scholar
  118. (b).
    J.P. Collman, Brauman, T.R. Halbert, and K.S. Suslick, Proc. Natl. Acad. Sci., USA 73: 3333– 3337 (1976).CrossRefGoogle Scholar
  119. 62.
    See reference 4 for a comprehensive and up-to-date compilation of sterically hindered and non-hindered model systems.Google Scholar
  120. 63. (a)
    M.L. Quillin, R.M. Arduini, J.S. Olson, and G.N. Phillips Jr., J. Mol. Biol. 234: 140–155 (1993).CrossRefGoogle Scholar
  121. (b).
    T. Li, M.L. Quillin, G.N. Phillips Jr., and J.S. Olson, Biochemistry 33: 1433–1446 (1994).CrossRefGoogle Scholar
  122. 64.
    M.C.M. Chung and H.D. Ellerton, Progr. Biophys. Mol. Biol. 35: 53–102 (1979).CrossRefGoogle Scholar
  123. 65.
    W.E. Royer Jr., J. Mol. Biol. 235: 657–681 (1994).CrossRefGoogle Scholar
  124. 66.
    P.R. Kolatkar, M.L. Hackert, and A.F. Riggs, J. Mol. Biol. 237: 87–97 (1994).CrossRefGoogle Scholar
  125. 67.
    (a) E. Antonini and M. Brunori, “Hemoglobin and Myoglobin in Their Reactions with Ligands,” North Holland, 1971.Google Scholar
  126. (b).
    K. Imai, “Allosteric Effects in Hemoglobin,” Cambridge University Press (1982).Google Scholar
  127. 68.
    T. Ochiai, S. Hoshina, and I. Usuki, Biochim. Biophys. Acta 1203: 310–314 (1993).CrossRefGoogle Scholar
  128. 69.
    J. Monod, J. Wyman, and J.-P.Changeux, J. Mol. Biol. 12: 88–118 (1965).CrossRefGoogle Scholar
  129. 70.
    M.F. Perutz, G. Fermi, B. Luisi, B.Shaanan, and R.C. Liddington, Acc. Chem. Res. 20: 307–321 (1987).CrossRefGoogle Scholar
  130. 71.
    J.Baldwin and C. Chotia J. Mol. Biol. 129: 175–195 (1979).CrossRefGoogle Scholar
  131. 72. (a)
    G.E.O. Borgstahl, P.H. Rogers, and A. Amone, J. Mol. Biol. 236: 817–830 (1994).CrossRefGoogle Scholar
  132. (b).
    G.E.O. Borgstahl, P.H. Rogers, and A. Amone, J. Mol. Biol. 236: 831–843 (1994).CrossRefGoogle Scholar
  133. (c).
    There is a report in the review literature70 for an R-state deoxyhemoglobin structure.Google Scholar
  134. 73. (a)
    G.K. Ackers, and F.R. Smith, Ann. Rev. Biophys. Biophys.Chem. 16: 583–609 (1987).CrossRefGoogle Scholar
  135. (b).
    G.K. Ackers, Biophys. Chem. 37: 371–382 (1990).CrossRefGoogle Scholar
  136. (c).
    V.J. LiCata, P.M. Dalessio, and G.K. Ackers, Proteins: Struct. Funct. Genet. 17: 279–296 (1993).CrossRefGoogle Scholar
  137. 74.
    M.M. Silva, P.H. Rogers, and A. Amone, J. Biol. Chem. 267: 17248–17256 (1992).Google Scholar
  138. 75.
    M.L. Doyle, G. Lew, G.J. Turner, D. Rucknagel, and G.K. Ackers, Proteins: Struct. Funct. Genet. 14: 351–362 (1992).CrossRefGoogle Scholar
  139. 76. (a)
    F.R. Smith, E.E. Lattman, and C.W. Carter Jr. Proteins 10: 81–91 (1991).CrossRefGoogle Scholar
  140. (b).
    J. Janin and S.J. Wodak, Proteins: Struct. Funct. Genet. 15: 1–4 (1993).CrossRefGoogle Scholar
  141. 77.
    G.J Turner, F. Galacteros, M.L.Doyle, B. Hedlund, D.W. Pettigrew, B.W. Turner, F.R. Smith, W. Moo-Penn, D.L. Rucknagel, and G.K. Ackers, Proteins: Struct. Funct. Genet. 14: 333–350 (1992).CrossRefGoogle Scholar
  142. 78.
    S. Balasubramanian, D.G. Lambright, J.H. Simmons, S.J. Gill, and S.G. Boxer, Biochemistry 33: 8355–8360 (1994).CrossRefGoogle Scholar
  143. 79.
    T.B. Freedman, J.S. Loehr, and T.M. Loehr, J. Am. Chem. Soc 98: 2809–2815 (1976).CrossRefGoogle Scholar
  144. 80. (a)
    K.D. Karlin and Z. Tyeklar, Adv. Inorg. Biochem. 9: 123 (1993).Google Scholar
  145. (b).
    K.D. Karlin and Y. Gultneh, Progr. Inorg. Chem. 35: 219–327 (1987).CrossRefGoogle Scholar
  146. 81. (a)
    D.C. Bradley, J.S. Ghotra, F.A. Hart, M.B. Hursthouse, and P.R. Raithby, J. Chem. Soc. Dalton Trans. 1166–1172 (1977).Google Scholar
  147. (b).
    R. Haegele and J.C.A. Boeyens, J. Chem. Soc. Dalton Trans. 648–650 (1977).Google Scholar
  148. 82. (a)
    N. Kitajima, Adv. Inorg. Chem. 39: 1–77 (1992).CrossRefGoogle Scholar
  149. (b).
    T.N. Sorrell, Tetrahedron 45: 3–68 (1989).CrossRefGoogle Scholar
  150. (c).
    Z. Zanello, S. Tamburini, P.A. Vigato, and G.A. Mazzocchin, Coord. Chem. Rev. 77: 165–273 (1987).CrossRefGoogle Scholar
  151. 83.
    K.D. Karlin, American Chemical Sociey Meeting, Washington, DC, August 21–25, Division of Inorganic Chemistry, paper 310 (1994).Google Scholar
  152. 84. (a)
    See reference 25 for a discussion on the active site of molluscan hemocyanin and tyrosinase.Google Scholar
  153. (b).
    E.T. Adman, Adv. Protein Chem. 42: 144–157 (1991).Google Scholar
  154. 85. (a)
    W.H. Armstrong and S.J. Lippard, J. Am. Chem. Soc. 105: 4837–4838 (1983).CrossRefGoogle Scholar
  155. (b).
    K. Wieghardt, J. Pohl, and W. Gebert, Angew. Chem., Int. Ed. Engl. 22: 727 (1983).CrossRefGoogle Scholar
  156. 86. (a)
    D.H. Busch and N.W. Alcock, Chem.Rev. 94: 585–623 (1994).CrossRefGoogle Scholar
  157. (b).
    M.H. Dickman and M.T. Pope, Chem.Rev. 94: 569–584 (1994).CrossRefGoogle Scholar
  158. 87. (a)
    P. Gomez-Romero, G.C. De Fotis, and G.B. Jameson, J. Am. Chem. Soc. 108: 851–853 (1986).CrossRefGoogle Scholar
  159. (b).
    P. Gómez-Romero, E.H. Witten, W.M. Reiff, G. Backes, J. Sanders-Loehr, and G.B. Jameson, J. Am. Chem. Soc. 111: 9039–9047 (1989).CrossRefGoogle Scholar
  160. (c).
    P. Gómez-Romero, E.H. Witten, W.M. Reiff, and G.B. Jameson, G. B. Inorg. Chem. 29: 5211–5217 (1990).CrossRefGoogle Scholar
  161. (d).
    P. Gómez-Romero, Ph.D. Thesis, Georgetown University, Washington, DC (1987).Google Scholar
  162. 88.
    J. Sanders-Loehr, W.D. Wheeler, A.K. Shiemke, B.A. Averill, and T.M. Loehr, J. Am. Chem. Soc. 111: 8084–8093 (1989).CrossRefGoogle Scholar
  163. 89.
    M.J. Maroney, American Chemical Sociey Meeting, Washington, DC, August 21–25, Division of Inorganic Chemistry, paper 335 (1994).Google Scholar
  164. 90. (a)
    M.W. Calhoun, J.W. Thomas, and R.B. Gennis, Trends Biochem. Sci. 19: 325–330 (1994).CrossRefGoogle Scholar
  165. (b).
    For an issue devoted to cytochrome c oxidase, see: J. Bioenerg. Biomembr. 25(2): (1993).Google Scholar
  166. (c).
    B.G. Malmström, Acc. Chem. Res. 26: 332–337 (1993).CrossRefGoogle Scholar
  167. (d).
    T. Ogura, S. Takahashui, S.Hirota, K. Shinzawa-Itoh, S. Yoshikawa, E.H. Appleman, and T.Kitagawa, J. Am. Chem. Soc. 115: 8527–8536 (1993).CrossRefGoogle Scholar
  168. 91. (a)
    A. Messerschmidt, in: “Bioinorganic Chemistry of Copper,” K.D. Karlin and Z. Tyeklar, eds., Chapman & Hall, New York, pp478–484 (1993).Google Scholar
  169. (b).
    A. Messerschmidt, H. Leucke, and R. Huber, J. Mol. Biol. 230: 997–1012 (1993).CrossRefGoogle Scholar
  170. (c).
    A. Messerschmidt and R. Huber, Eur. J. Biochem. 341–347 (1990).Google Scholar
  171. 92.
    J.C. Severns and D.R. McMillin, Biochemistry 29: 8592–8597 (1990).CrossRefGoogle Scholar
  172. 93. (a)
    See reference 82(a).Google Scholar
  173. (b).
    A. Nanthakumar, S. Fox, N.N. urthy, K.D. Karlin, N. Ravi, B.H. Huynh, E.P. Day, K.S. Hagen, and N.J. Blackburn, J. Am. Chem. Soc. 115: 8513–8514 (1993).CrossRefGoogle Scholar
  174. (c).
    S. Lee and R.H. Holm, J. Am. Chem. Soc. 115: 11789–11798 (1993).CrossRefGoogle Scholar
  175. 94.
    R.E. Stenkamp and L.H. Jensen, Adv. Inorg. Biochem. 1: 219 (1979).Google Scholar
  176. 95. (a)
    R.E. Stenkamp, L.C. Sieker, and L.H. Jensen, J. Am. Chem. Soc. 106: 618–622 (1984).CrossRefGoogle Scholar
  177. (b).
    M.A. Holmes and R.E. Stenkamp, J. Mol. Biol. 220: 723–737 (1991).CrossRefGoogle Scholar
  178. (c).
    M.A. Holmes, I. Le Trong, S. Turley, L.C. Sieker, and R.E. Stenkamp, J. Mol. Biol. 218: 583–593 (1991).CrossRefGoogle Scholar
  179. 96. (a)
    D.H. Ohlendorf, J.D. Lipscomb, P.C. Weber, Nature 336: 403–405 (1988).CrossRefGoogle Scholar
  180. (b).
    L. Que Jr., The catechol dioxygenases, in: “Iron Carriers and Iron Proteins,” T.M. Loehr, ed., VCH, New York, Vol. 5, pp 467–524 (1989).Google Scholar
  181. 97.
    E.N. Baker, B.F. Anderson, H.M.Baker, M. Haridas, G.B. Jameson, G.E. Norris, S.V. Rumball, and C.A. Smith, Int. J. Biol. Macromol. 13: 122–129 (1991).CrossRefGoogle Scholar
  182. 98. (a)
    D.C. Harris and P. Aisen, Physical biochemistry of the transferrins, in: “Iron Carriers and Iron Proteins,” T.M. Loehr, ed., VCH, New York, Vol. 5, pp 239–351 (1989).Google Scholar
  183. (b).
    P. Aisen, Physical biochemistry of the transferrins: update, 1984–1988, in: “Iron Carriers and Iron Proteins,” T.M. Loehr, ed., VCH, New York, Vol. 5, pp 239–351 (1989).Google Scholar
  184. 99.
    D.N.Kutrtz Jr. and W.C. Stevens, J. Am. Chem. Soc. 106: 1523–1524 (1984).CrossRefGoogle Scholar
  185. 100. (a)
    S. Yan, D.D. Cox, L.L. Pearce, C. Juarez-Garcia, L. Que Jr., J.H. Zhang, and C.J. O’Connor, Inorg. Chem. 28: 2507–2509 (1989).CrossRefGoogle Scholar
  186. (b).
    R.C. Holz, T.E. Elgren, L.L. Pearce, J.H. Zhang, C.J. O’Connor, and L. Que Jr., Inorg. Chem. 32: 5844–5850 (1993).CrossRefGoogle Scholar
  187. (c).
    R.E. Norman, R.C. Holz, J.H. Zhang, C.J. O’Connor, S. Menage, and L. Que Jr. Inorg. Chem. 29: 4629–4637 (1990).CrossRefGoogle Scholar
  188. (d).
    A. Hazell, K.B. Jensen, C.J. McKenzie, and H. Tofitlund, Inorg. Chem. 33: 3127–3134 (1994).CrossRefGoogle Scholar
  189. (e).
    E.C. Wilkinson, Y. Dong, and L. Que Jr., J. Am. Chem. Soc. 116: 8394–8395 (1994).CrossRefGoogle Scholar
  190. 101. (a)
    H.P. Berends and D.W. Stephan, Inorg. Chem, 26: 749–754 (1987).CrossRefGoogle Scholar
  191. (b).
    H.P. Berends and D.W. Stephan, Inorg. Chim Acta, 99: L53–L54 (1987).CrossRefGoogle Scholar
  192. 102.(a)
    M. Suzuki, A. Uehara, and K. Endo, Inorg. Chim. Acta 123: L9–L10 (1986).CrossRefGoogle Scholar
  193. (b).
    M. Suzuki, H. Osho, A. Uehara, K. Endo, M. Yanaga, S. Kida, and K. Saito, Bull. Chem. Soc. Japan 61: 3907–3913 (1988).CrossRefGoogle Scholar
  194. (c).
    A. Ben-Hussein, N.L. Morris, G.J. Long, P. Gomez-Romero, and G.B. Jameson, unpublished structures of various salts of compounds described in reference 102(a).Google Scholar
  195. (d).
    A.S. Borovik, V. Papaefithymiou, L.F. Taylor, O.P. Anderson, and L. Que Jr., J. Am. Chem. Soc. 111:6183–6195 (1989).CrossRefGoogle Scholar
  196. (e).
    M.S. Mashuta, R.J. Webb, J.K. McKusker, E.A. Schmitt, K.J. Oberhausen, and J.F. Richardson, R.M. Buchanan, and D.N. Hendrickson, J. Am.Chem. Soc. 114: 3815–3827 (1992).CrossRefGoogle Scholar
  197. 103. (a)
    M.S. Nasir, K.D. Karlin, D. McGowty, and J. Zubieta, J. Am. Chem. Soc. 113: 698–700 (1991).CrossRefGoogle Scholar
  198. (b).
    J.D. Crane, D.E. Fenton, J.-M. Latour, and A. Smith, J. Chem. Soc., Dalton Trans. 2979–2987 (1991).Google Scholar
  199. 104.
    E. Bernard, W. Moneta, J. Laugier, S. Chardon-Noblat, A. Deronzier, J.-P. Tuchagues, and J.-P. Latour, Angew Chem, Int. Ed. Engl. 33: 887–889 (1994).CrossRefGoogle Scholar
  200. 105. (a)
    P. Kamaras, M.C. Cajulis, M. Rapta, G.A. Brewer, and G.B. Jameson, J. Am. Chem. Soc. 116: 10334–10335 (1994).CrossRefGoogle Scholar
  201. (b).
    P. Kamaras, Ph. D. Dissertation, Georgetown University, Washington, DC (1994).Google Scholar
  202. 106.
    P. Gómez-Romero, N. Casan-Pastor, A. Ben Hussein, and G.B. Jameson, J. Am. Chem. Soc. 110: 1988–1990 (1988).CrossRefGoogle Scholar
  203. 107.
    R.M. Buchanan, American Chemical Sociey Meeting, Washington, DC, August 21–25, Division of Inorganic Chemistry, paper 213 (1994).Google Scholar
  204. 108.
    (a) H. Adams, G. Candeland, J.D. Crane, D.E. Fenton, and A. Smith, J. Chem. Soc., Chem. Commun. 93–95 (1990).Google Scholar
  205. (b).
    A. Bencini, D Gatteschi, C. Zanchii, O. Kahn, M. Verdaguer, and M. Julve, Inorg. Chem. 25: 3181–3183 (1986).CrossRefGoogle Scholar
  206. (c).
    M. Julve, M. Verdaguer, A. Gleizes, M. Piloche-Levisalles, and O. Kahn, Inorg. Chem. 23: 3808–3818 (1984).CrossRefGoogle Scholar
  207. (d).
    G. Cros, J.-P. Laurent, and F. Dahan, Inorg. Chem. 26: 596–599 (1987).CrossRefGoogle Scholar
  208. 109.
    O. Kahn, S. Sikorav, J. Gunterou, Y. Jeannin, and J. Jeannin, Inorg. Chem. 22: 2577–2578 (1983).CrossRefGoogle Scholar
  209. 110.
    I. Collamati, G. Dessy, and V. Fares, Inorg. Chim. Acta 111: 149–155 (1986).CrossRefGoogle Scholar
  210. 111.
    W.B. Tolman, S. Liu, J.G. Bentsen, and S.J. Lippard, J. Am. Chem. Soc. 113: 152–164 (1991).CrossRefGoogle Scholar
  211. 112. (a)
    B. Bremer, K. Schepers, P. Fleischhauer, W. Haase, G. Henkel, and B. Krebs, J. Chem. Soc. Chem. Comun. 510–511 (1991).Google Scholar
  212. (b).
    B. Krebs, K. Schepers, B. Bremer, G. Henkel, E. Althaus, W. Müller-Warmuth, K. Griesar, and W. Haase, Inorg. Chem. 33: 1907–1914 (1994).CrossRefGoogle Scholar
  213. 113. (a)
    V.D. Campbell, E.J. Parsons, and W.T. Pennington, Inorg. Chem. 32: 1773–1778 (1993).CrossRefGoogle Scholar
  214. (b).
    A. Neves, M.A. de Brito, I. Vencato, V. Drago, K. Griesar, W. Haase, and Y.P. Mascarenhas, Inorg. Chim. Acta 214: 5–8 (1993).CrossRefGoogle Scholar
  215. 114.
    M. Rapta, P. Kamaras, G.A. Brewer, and G.B. Jameson, J. Am. Chem. Soc., submitted.Google Scholar
  216. 115. (a)
    P.N. Turowski, W.H. Armstrong, S. Liu, S.N. Brown, and S.J. Lippard, Inorg. Chem. 33: 636– 645 (1994).CrossRefGoogle Scholar
  217. (b).
    P.N. Turowski, W.H. Armstrong. M.E. Roth, and S.J. Lippard, J. Am. Chem. Soc. 112: 681–690 (1990).CrossRefGoogle Scholar
  218. (c).
    R.E. Norman, S. Yan, L. Que Jr., G. Backes, J. Ling, J. Sanders-Loehr, and J.H. Zhang, and C.J. O’Connor, J. Am. Chem. Soc. 112: 1554–1562 (1990).CrossRefGoogle Scholar
  219. 116.
    M.Rapta and G.B. Jameson, unpublished results.Google Scholar
  220. 117.
    Y. Zang, G. Pen, L. Que Jr., B.G. Fox, and E Münck, J. Am. Chem. Soc. 106: 3653–3654 (1984).CrossRefGoogle Scholar
  221. 118.
    M. Rapta, P. Kamaras, J.A. Cooley, and G.B. Jameson, American Chemical Sociey Meeting, Washington, DC, August 21–25, Division of Inorganic Chemistry, paper 276 (1994).Google Scholar
  222. 119.
    J.R. Hartman, R.L. Rardin, P. Chaudhuri, K. Pohl, K. Wieghardt, B. Nuber, J. Weiss, G.C. Papaefthymiou, R.B. Frankel, and S.J. Lippard, J. A. Chem. Soc. 109: 7387–7396 (1987).CrossRefGoogle Scholar
  223. 120. (a)
    K.S. Hagen and R. Lachiotte, J. Am. Chem. Soc. 114: 8741–8742 (1992).CrossRefGoogle Scholar
  224. (b).
    R. Lachiotte, A.Kitaygarodskiy, and K.S. Hagen, J. Am. Chem. Soc. 115: 8883–8884 (1993).CrossRefGoogle Scholar
  225. 121.
    H.D. Campbell, D.A. Dionysus, D.T. Keough, B.F. Wilson, J. de Jersey, and B. Zemer, Biochem. Biophys. Res. Commun. 82: 615–620 (1978).CrossRefGoogle Scholar
  226. 122.
    S. Yan, L. Que, L. Jr., L.F. Taylor, and O.P. Anderson, J. Am. Chem. Soc. 110: 5222–5224 (1988).Google Scholar
  227. 123.
    D.L. Wang, R.C. Holz, S.S. David, L. Que Jr., and M.T. Stankovich, Biochemistry 30: 8187–8194 (1991).CrossRefGoogle Scholar
  228. 124.
    A.E. True, R.C. Scarrow, C.R. Randall, R.C. Holz, and L. Que Jr., J. Am.Chem. Soc. 115: 4246–4254 (1993).CrossRefGoogle Scholar
  229. 125.
    (a) S. Gehring, P. Fleischhauer, W. Haase, M. Dietrich, and H. Witzel, Biol. Chem. Hoppe-Seyler371: 786 (1990). This report contradicts earlier reports (125(b) and(c)) of strong antiferromagnetic coupling for oxidized purple acid phosphatase.Google Scholar
  230. (b).
    E. Sinn, C.J. O’Connor, J. de Jersey, B. Zemer, Inorg.Chim. Acta 78: L13–L15 (1983).CrossRefGoogle Scholar
  231. (c).
    J.C. Davis and B.A. Averill, Proc. Natl. Acad. Sci., USA 79: 4623–4627 (1982).CrossRefGoogle Scholar
  232. 126. (a)
    L. Borer, L. Thalken, C. Ceccarelli, M. Glick, J.H. Zhang, and W.M. Reiff, Inorg.Chem.22:1719–1724 (1983).CrossRefGoogle Scholar
  233. (b).
    J.A. Thich, C.-C. Ou, D. Powers, B. Vasilious, D. Mastropaolo, J.A. Potenza, and H.J. Schugar, J. Am. Chem. Soc. 98: 1425–1432 (1976).CrossRefGoogle Scholar
  234. (c).
    C.-C Ou, R.A. Lanlancette, J. A. Potenza, and H.J. Schugar, J. Am. Chem. Soc. 100: 2053–2057 (1978).CrossRefGoogle Scholar
  235. 127.
    W.H. Armstrong and S.J. Lippard, J. Am. Chem. Soc. 106: 4632–4633 (1984).CrossRefGoogle Scholar
  236. 128.
    A. Ben-Hussein, P. Gómez-Romero, N.L. Morris, 0. Zafarullah,W.M. Reiíï, and G.B. Jameson,unpublished structure of [N3Fe(02CCH3)]20H3+.Google Scholar
  237. 129.
    A.S. Brovik and L. Que Jr. J. Am Chem. Soc. 110: 2345–2347 (1988).CrossRefGoogle Scholar
  238. 130.
    B.P. Murch, F.C.Bradley, and L. Que Jr., J. Am Chem. Soc. 110: 2345–2347 (1988).CrossRefGoogle Scholar
  239. 131.
    E. Tschuchida, American Chemical Sociey Meeting, Washington, DC, August 21–25, Division of Polymeric Materials: Science and Engineering Inc., International Symposium on Metal- Containing Polymeric Materials: Bioinorganic Polymers, paper 362 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Geoffrey B. Jameson
    • 1
  1. 1.Department of Chemistry and BiochemistryMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations