Rational Design of Novel Polyelectrolytes: Aluminosilicate/Poly(Ethylene Glycol) Copolymers

  • Glenn C. Rawsky
  • Duward F. Shriver


The field of solvent-free polymer electrolytes includes both polymer-salt complexes and more recently, polyelectrolytes. These materials comprise a class of solid ionic conductors which have been the subject of increasing attention in recent years due to their unique integration of desirable mechanical and electrochemical properties1. Solvent-free polymer electrolytes are the subject of much research as potential electrolytes for high energy density advanced batteries and other electrochemical devices.2


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.F. Shriver and G.C. Farrington, Solid ionic conductors, Chem. Eng. News 63:42–57 (1985).CrossRefGoogle Scholar
  2. 2.
    J. R. MacCallum and C. A. Vincent, “Polymer Electrolyte Reviews, Vol. 1 and 2” Elsevier, London (1987, 1989).Google Scholar
  3. 3.
    J.S. Tonge and D.F. Shriver, Polymer electrolytes, in: “Polymers for Electronic Applications,” J.H. Lai, ed., CRC Press, Boca Raton, Florida (1989).Google Scholar
  4. 4.
    M.A. Ratner and D.F. Shriver, Ion transport in solvent-free polymers, Chem. Rev. 88:109–24 (1988).CrossRefGoogle Scholar
  5. 5.
    (a) A.A. Blumberg, S.S. Pollack, and C.A.J. Hoeve, A poly (ethylene oxide)-mercuric chloride complex, J. Polym. Sci. Part A, 2:2499 (1964). (b) R.D. Lunberg, F.E. Bailey, and R.W. Callard, Interaction of inorganic salts with poly (ethylene oxide), J. Polym. Sci. Part A, 1(4): 1563 (1966).Google Scholar
  6. 6.
    (a) P.V. Wright, Electrical conductivity in ionic complexes of poly(ethylene oxide), Br. Polym. J. 7:319 (1975). (b) D.E. Fenton, J.M. Parker, and P.V. Wright, Complexes of alkali metal ions with poly (ethylene oxide), Polymer 14:589 (1973).Google Scholar
  7. 7.
    Y. Takahashi and H. Tadokoro, Structural studies of polyethers (-(CH2)m-O-)n. X. Crystal structure of PEO, Macromolecules, 6:672 (1973).CrossRefGoogle Scholar
  8. 8.
    figure adapted from: S. Okamura and Y. Chatani, Crystal structure of PEO sodium iodide complex, Polymer, 28:1815 (1987).CrossRefGoogle Scholar
  9. 9.
    (a) B. Papke, M.A. Ratner, R. Dupon, T. Wong, M. Brodwin, and D.F. Shriver, Structure and ion transport in polymer-salt complexes, Solid State Ionics 5:83 (1981). (b) B. Papke, M.A. Ratner, and D.F. Shriver, Vibrational spectroscopy and structure of polymer electrolytes, PEO complexes of alkali metal salts, J. Phys. Chem. Solids 42:493 (1981). (c) D. Teeters and R. Frech, Temperature dependent spectroscopic studies of PPO and PPO-inorganic salt complexes, Solid State Ionics 18/19:271 (1986).Google Scholar
  10. 10.
    (a) M.B. Armand, J.M. Chabagno, and M.J. Duclot, Poly-ethers as solid electrolytes, in: “Fast Ion Transport in Solids: Electrodes and Electrolytes,” P. Vashishna, J.N. Mundy, and G.K. Shenoy, eds., North-Holland, New York, p.131 (1979). (b) J.M. Parker, P.V. Wright, and C.C. Lee, A double helical model for some alkali metal ion-poly (ethylene oxide) complexes, Polymer 22:1305 (1981).Google Scholar
  11. 11.
    (a) M. Minier, C. Berthier, and W. Gorecki, Thermal analysis and NMR studies of a PEO complex electrolyte: PEO(LiSO3CF3)x, J. Phys. 45:739 (1984). (b) C. Berthier, W. Gorecki, M. Minier, M.B. Armand, J.M. Chabagno, and P. Rigaud, Microscopic investigation of ionic conductivity in alkali metal salts-PEO adducts, Solid State Ionics 11:91 (1983).Google Scholar
  12. 12.
    M.L. Williams, R.F. Landel, and J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Chem. Soc. 77:3701 (1955).CrossRefGoogle Scholar
  13. 13.
    (a) G. Grest and M.H. Cohen, Liquids, glasses, and the glass transition: a free volume approach, Adv. Chem. Phys. 48:455 (1981). (b) M. Watanabe and N. Ogata, Ionic conductivity of polymer electrolytes and future applications, Br. Polym. J. 20:181 (1988).Google Scholar
  14. 14.
    (a) J.H Gibbs and E.A. DiMarzio, Nature of the glass transition and the glassy state, J. Chem. Phys. 28:373 (1958). (b) J.H Gibbs, “Modern Aspects of the Vitreous State,” Butterworths, London, Ch.7 (1965). (c) G. Adam and J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys. 43:139 (1965). (d) B.L. Papke, M.A. Ratner, and D.F. Shriver, Conformation and ion-transport models for the structure and ionic conductivity in complexes of polyethers with alkali metal salts, J. Electrochem. Soc. 129:1694 (1982).Google Scholar
  15. 15.
    M. Doyle, T.F. Fuller, and J. Newman, Modeling of galvanostatic charge and discharge of the lithium/ polymer/ insertion cell, J. Electrochem. Soc. 140(6): 1526–33 (1993).CrossRefGoogle Scholar
  16. 16.
    M.C. Lonergan, Ph.D. thesis, Northwestern University, Evanston, IL (1994).Google Scholar
  17. 17.
    L. C. Hardy and D. F. Shriver, Preparation and electrical response of solid polymer electrolytes with only one mobile species, J. Am. Chem. Soc. 107:3823–8 (1985).CrossRefGoogle Scholar
  18. 18.
    (a) S. Takeoka, K. Horiuchi, S. Yamagata, and E. Tsuchida, Sodium ion conduction of perfluorosulfonate ionomer/poly (oxyethylene) composite films, Macromolecules 24:2003–6 (1991). (b)D. J. Bannister, G. R. Davies, I. M. Ward, and J. E. Mclntyre, ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers, Polymer 25:1291–6 (1984). (c)G. Zhou, I. M. Khan, and J. Smid, Cation transport polymer electrolytes. Siloxane comb polymers with pendant oligo-oxyethylene chains and sulphonate groups, Polym. Commun. 30:52–5 (1989). (d)T. Hamaide, C. Carré, and A. Guyot, Ionic conductivity in sulphonate end-capped poly(ethylene oxide), in: “Second International Symposium on Polymer Electrolytes,” B. Scrosati, ed., Elsevier, New York (1990). (e)M. Watanabe, S. Nagano, K. Sanui, and N. Ogata, Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements, Solid State Ionics 28–30:911–7 (1988). (f)E. A. Reitman and M. L. Kaplan, Single-ion conductivity in comblike polymers, J. Polym. Sci. 28:187–91 (1990). (g)E. Tsuchida, N. Kobayashi, and H. Ohno, Single-ion conduction in poly[(oligo(oxyethylene)methacrylate)-co-(alkali-metal methacrylates)], Macromolecules 21:96–100 (1988). (h)J. F. LeNest, A. Gandini, H. Cheradame, and J. P. Cohen-Addad, Cationic transport features of ionomeric polymer networks, Polym. Commun. 28:302–5 (1987).Google Scholar
  19. 19.
    S. Ganapathiappan, K. Chen, and D. F. Shriver, A new class of cation conductors: polyphosphazene sulfonates, Macromolecules 21:2299–2301 (1988).CrossRefGoogle Scholar
  20. 20.
    K. Chen and D.F. Shriver, Magnesium ion conducting polymeric electrolytes, Chem. Mater. 3:771–2 (1991).CrossRefGoogle Scholar
  21. 21.
    K. E. Doan, M. A. Ratner, and D. F. Shriver, Synthesis and electrical response of single-ion conducting network polymers based on sodium poly(tetraalkoxy aluminates), Chem. Mater. 3:418 (1991).CrossRefGoogle Scholar
  22. 22.
    K.E. Doan, B.J. Heyen, M.A. Ratner, and D.F. Shriver, Influence of cryptands and crown ethers on ion transport and vibrational spectra of polymer salt complexes, Chem. Mater. 2:539 (1990).CrossRefGoogle Scholar
  23. 23.
    T. F. Yeh, H. Liu, Y. Okamoto, H. S. Lee, and T. A. Skotheim, Polyelectrolytes with sterically hindered anionic charges, in: “Second International Symposium on Polymer Electrolytes,” B. Scrosati, ed., Elsevier, New York (1990). An ostensibly identical polymer, synthesized in our laboratory, exhibited a lower conductivity (1.4x10-6 S cm-1 @ 30° C vs. 5x10-5 S cm-1): M.C. Lonergan, M.A. Ratner, and D.F. Shriver, Cryptand addition to polyelectrolytes: a means of conductivity enhancement and a probe of ionic interactions, J. Am. Chem. Soc. in press (1995).Google Scholar
  24. 24.
    K. Chen, S. Ganapathiappan, and D.F. Shriver, Cryptate effects on sodium-conducting phosphazene polyelectrolytes, Chem. Mater. 1:483–4 (1989).CrossRefGoogle Scholar
  25. 25.
    H. Marsmann, 29Si-NMR spectroscopic results, in: “Oxygen-17 and Silicon-29 (NMR, Basic Principles and Progress; Vol.17),” P. Diehl, E. Fluck, and R. Kosfeld, eds., Springer-Verlag, New York (1981) pp.78, 147, 166, 194–5.Google Scholar
  26. 26.
    O. Křiž, B. Čásenský, A. Lyčka, J. Fusek, and S. Heřmánek,27A1 NMR behavior of aluminum alkoxides, J. Magn. Reson., 60:375–81 (1984).Google Scholar
  27. 27.
    FJ. Feher, T.A. Budzichowski, and K.J. Weller, Polyhedral aluminosilsesquioxanes: soluble organic analogues of aluminosilicates, J. Am. Chem. Soc., 111:7288–9 (1989).CrossRefGoogle Scholar
  28. 28.
    H. Schmidbaur, Recent developments in the chemistry of heterosiloxanes, Angew. Chem. Int. Ed. 4(3):201 (1965).CrossRefGoogle Scholar
  29. 29.
    M.A. Ratner and A. Nitzan, Conductivity in polymer ionics: dynamic disorder and correlation, Faraday Discuss. Chem. Soc. 88:19–42 (1989).CrossRefGoogle Scholar
  30. 30.
    P. Ferloni, G. Chiodelli, A. Magistris, and M. Sanesi, , Solid State Ionics 18/19:265 (1986).CrossRefGoogle Scholar
  31. 31.
    J.R. MacCullum, MJ. Smith, and C.A. Vincent, The effect of radiation-induced crosslinking on the conductance of LiClO4-PEO electrolytes, Solid State Ionics 11:307 (1984).CrossRefGoogle Scholar
  32. 32.
    R. Dupon, B.L. Papke, M.A. Ratner, and D.F. Shriver, Ion transport in polymer electrolytes formed between poly (ethylene succinate) and LiBF4, J. Electrochem. Soc. 131:586 (1984).CrossRefGoogle Scholar
  33. 33.
    P.M. Blonsky, D.F. Shriver, P. Austin, and H.R. Allcock, Poly-phosphazene solid electrolytes, J. Am. Chem. Soc. 106:6854 (1984).CrossRefGoogle Scholar
  34. 34.
    J.P Lemmon, R.L. Kohnert, and M.L. Lerner, Characterization of a stoichiometric range of sodium salt complexes of amorphous poly [(oxymethylene)oligo(oxyethylene)] by differential scanning calorimetry and 23Na NMR, Macromolecules 26:2767–70 (1993).CrossRefGoogle Scholar
  35. 35.
    A. Bouridah, F. Dalard, D. Deroo, and M.B. Armand, Potentiometric measurements of ionic mobilities in PEO electrolytes, Solid State Ionics 18/19:287 (1986).CrossRefGoogle Scholar
  36. 36.
    M. Leveque, J.F. LeNest, A. Gandini, and H. Cheradame, Ionic transport numbers in polyether networks containing different metal salts, Makromol. Chem. Rapid Commun. 4:497 (1982).CrossRefGoogle Scholar
  37. 37.
    P.G. Hall, G.R. Davies, J.E. McIntyre, I.M. Ward, D.J. Bannister, and K.M.F. LeBrocq, Ion conductivity in polysiloxane comb polymers with ethylene glycol teeth, Polym. Prepr. 27:98 (1986).Google Scholar
  38. 38.
    P.R. Soresen, and T. Jacobson, Limiting currents in the polymer electrolyte: PEOxLiSO3CF3, Solid State Ionics 9/10:1147 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Glenn C. Rawsky
    • 1
  • Duward F. Shriver
    • 1
  1. 1.Department of Chemistry and Materials Research CenterNorthwestern UniversityEvanstonUSA

Personalised recommendations