Investigation of the Ion-Binding Properties of Tactic Poly(Methacrylic Acids) Using Terbium (III) Ion as a Fluorescent Probe

  • Hannia Luján-Upton
  • Yoshiyuki Okamoto


The lanthanides have fourteen 4ƒ electrons successively added to the lanthanum, La, configuration. These elements are highly electropositive and form a very stable tripositive cation, Ln3+, as their primary oxidation state. The radius of these ions decrease with increasing atomic number in a trend known as the lanthanide contraction. The elements are highly electropositive because the sum of the first three ionization enthalpies is relatively low. They easily form +3 ions in solids, such as oxides, and in complexes while existing as [Ln(H2O)n]3+ in aqueous solution. Other oxidation states are also possible, for example, Ce4+, Sm2+, Eu 2+, and Yb2+ are all stable in aqueous solutions and in solids.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. K. Jørgensen, Orbitals in Atoms and Molecules, Academic, New York (1962), Chap. 11.Google Scholar
  2. 2.
    T. Moeller, The Chemistry of the Lanthanides, Reinhold, New York (1963), Chap. 3 & 4.Google Scholar
  3. 3.
    G. Schwarzenbach, Advances in Inorganic Chemistry and Radiochemistry, Vol. 3, H. J. Emeleus and A. G. Sharpe, eds., Academic, New York (1961), p. 265.Google Scholar
  4. 4.
    E. Nieboer and W. A. E. McBryde, Can. J. Chem., 51, 2511 (1973).CrossRefGoogle Scholar
  5. 5.
    R. J. P. Williams and J. D. Hale, Struct. Bonding, 1, 249 (1966).CrossRefGoogle Scholar
  6. 6.
    R. G. Pearson, J. Chem. Educ., 56, 581 (1968).CrossRefGoogle Scholar
  7. 7.
    G. Klopman, J. Am. Chem. Soc., 90, 223 (1968).CrossRefGoogle Scholar
  8. 8.
    T. Moeller, Inorganic Chemistry Series One, K. W. Bagnall, ed., University Park Press, Baltimore (1972), Vol. 7, p. 275.Google Scholar
  9. 9.
    G. Blasse and A. Bril, Phillips Technical Review, 31, (10), 314 (1970).Google Scholar
  10. 10.
    R. D. Peacock, Struct. Bond., 22, 84, (1975).Google Scholar
  11. 11.
    F.S. Richardson, Chem. Rev, 82, 541 (1982).CrossRefGoogle Scholar
  12. 12.
    F. S. Richardson, J. D. Saxe, S. A. Davis, and T. R. Faulkner, Mol. Phys., 42, 401 (1981).CrossRefGoogle Scholar
  13. 13.
    J. P. Morley, J. D. Saxe, and F. S. Richardson, Mol. Phys., 47, 379, (1982).CrossRefGoogle Scholar
  14. 14.
    J. D. Saxe, J. P. Morley, and F. S. Richardson, Mol. Phys., 47, 407, (1982).CrossRefGoogle Scholar
  15. 15.
    F.S.Richardson, Inorg. Chem., 19, 2806, (1980).CrossRefGoogle Scholar
  16. 16.
    F. S. Richardson, Chem. Rev., 79, 17, (1979).CrossRefGoogle Scholar
  17. 17.
    F. S. Richardson, and T. R. Faulkner, J. Chem. Phys., 76, 1595, (1982).CrossRefGoogle Scholar
  18. 18.
    J. D. Saxe, T. R. Faulkner, and F. S. Richardson, J. Chem. Phys., 76, 1607, (1982).CrossRefGoogle Scholar
  19. 19.
    W. D. Horrock’s, Jr., and D. R. Sudnick, Acc. Chem. Res., 14, 384, (1981).CrossRefGoogle Scholar
  20. 20.
    W. D. Horrock’s, Jr., reference 19Google Scholar
  21. 21.
    H. G. Brittain, S. P. Kelty, J. A. Peters, J. Coord. Chem., 23, 21, (1991).CrossRefGoogle Scholar
  22. 22.
    J. Kido, Y. Okamoto, Makromol. Chem., Macromol. Symp., 59, 83 (1992).CrossRefGoogle Scholar
  23. 23.
    J. Kido, H. G. Brittain, and Y. Okamoto, Macromolecules, 21, 1872, (1988).CrossRefGoogle Scholar
  24. 24.
    V. Crescenzi, H. G. Brittain, N. Yoshino, and Y. Okamoto, J. Polym. Sci.: Polym. Phys. Ed., 23,437, (1985).Google Scholar
  25. 25.
    I. Nagata, Y. Okamoto, Macromolecules, 77, 773, (1977).Google Scholar
  26. 26.
    W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys., 49, 4447, (1968).CrossRefGoogle Scholar
  27. 27.
    W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys., 49, 4412, (1968).CrossRefGoogle Scholar
  28. 28.
    A. Rudman, S. Paoletti, and H. G. Brittain, Inorg. Chem., 24, 1283,(1985).CrossRefGoogle Scholar
  29. 29.
    O.L. Malta, Molecular Physics, 42, (1), 65, (1981).CrossRefGoogle Scholar
  30. 30.
    R. D. Peacock, Struct. Bond., 22, 84, (1975).Google Scholar
  31. 31.
    G. Odian, Principles of Polymerization, 2nd Edition, John Wiley & Sons, New York, p568, (1970).Google Scholar
  32. 32.
    E. M. Loebl and J. J. O’Neill, J. Polym. Sci., 45, 538, (1960).CrossRefGoogle Scholar
  33. 33.
    E. M. Loebl and J. J. O’Neill, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem., 3, 466, (1962).Google Scholar
  34. 34.
    Loebl, reference 31Google Scholar
  35. 35.
    J. J. O’Neill, E. M. Loebl, A. Y. Kandanian, and H. Morawetz, J. Polym. Sci., A-1,3, 4201 (1965).Google Scholar
  36. 36.
    L. Costantino, V. Crescenzi, F. Quadrifoglio, and V. Vitagliano, J. Polym. Sci., A-1,2, 5771, (1967).Google Scholar
  37. 37.
    M. Menger, P. A. Chicklo, and M. J. Sherrod, Tetrahedron Letters, 30, 6943, (1989).CrossRefGoogle Scholar
  38. 38.
    J. B Lando and J. Semen, J. Macromol. Sci.,-Phys., B7(2), 297–317 (1973).CrossRefGoogle Scholar
  39. 39.
    Y. Muroga, I., Noda, and M. Nagasawa, Macromolecules, 18, 1580, (1985).CrossRefGoogle Scholar
  40. 40.
    H. Luján-Upton, Part I: Investigation on the Ion-Binding Properties of Carboxy - Containing Compounds using Terbium (III) Ion as a Fluorescent Probe, Ph.D. Thesis, Polytechnic University, Appendix, p72, January 1995.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Hannia Luján-Upton
    • 1
  • Yoshiyuki Okamoto
    • 1
  1. 1.Department of Chemistry and the Polymer Research InstitutePolytechnic UniversityBrooklynUSA

Personalised recommendations