Advertisement

Polyimides Doped with Silver-II: Surface Conductive Films

  • Adley F. Rubira
  • James D. Rancourt
  • Larry T. Taylor
Chapter

Abstract

Polyimides are used for a wide range of applications in areas such as integrated electronic circuits and aerospace devices that require excellent dielectric properties, high temperature stability and chemical inertness (1). On the other hand, some applications require low electrical resistivity and high reflectivity which are characteristics that are more typical of metals. In the attempt to synthesize materials with unique combinations of properties, metal-containing polymeric composite material (2,3) have been suggested as candidates. Insulating polymers possessing desirable technological properties may be rendered conductive by mixing with conductive particles such as carbon black, metal powders, flakes or fibers and metal coated particles, but in many cases high loading levels have been necessary which spoil the polymer’s properties. The approach of Taylor and co-workers (4-10) has been to dissolve additives (metal salts and organometallic complexes) into a poly (amide acid) solution. The resulting films of pre-polymer upon thermolysis undergo both imidization and metallization. Appropriate processing and the correct choice of monomers yield reflective and/or conductive films in which the polymer’s properties are basically maintained (11, 12). Enhanced surface reflectivity has been obtained with copper (13), gold (14), and silver (15-18, 11) compounds; while palladium, platinum (19), and tin (20) salts have improved surface electrical conductivity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Koton, Polvimides Thermally Stable Polymers, Macromolecular Compounds Consultants Bureau, New York, 1988, p. 271.Google Scholar
  2. 2.
    J. E.Sheats, C. E. Carraher, and C. U. Pittman, in Metal Containing Polymer Systems: Plenum, New York, 1985.CrossRefGoogle Scholar
  3. 3.
    H. R. Allcock, Adv. Mater., 6, 106 (1994).CrossRefGoogle Scholar
  4. 4.
    L. T. Taylor and J. D. Rancourt, In Inorganic and Metal Containing Polymeric Materials, Sheats, J., Ed.; Plenum Press: New York, 1990, pp. 109–126.Google Scholar
  5. 5.
    S. A.Ezzell, T. A. Furtsch, E. Khor, and L. T. Taylor, J. Polym. Sci., Polym. Chem. Ed., 21, 865 (1983).CrossRefGoogle Scholar
  6. 6.
    J. D. Rancourt, G. M. Porta, and L. T. Taylor, Thin Solid Films, 158, 189 (1988).CrossRefGoogle Scholar
  7. 7.
    L. T. Taylor, V. C. Carver, T. A. Furtsch, and A. K. St. Clair, ACS Symp. Ser., 121, 71, (1980).CrossRefGoogle Scholar
  8. 8.
    G. M. Porta, J. D. Rancourt, and L. T. Taylor, Chem. Mater., 1, 269 (1989).CrossRefGoogle Scholar
  9. 9.
    R. K. Boggess and L. T. Taylor, J. Polym. Sci., Polym. Chem. Ed., 25, 685 (1987).CrossRefGoogle Scholar
  10. 10.
    R. K. Boggess and L. T. Taylor, Recent Advances in Polyimide Science and Technology, Proceedings of the Second International Conference on Polyimides: Chemistry, Characterization, and Applications. W. D. Weber and M. R. Gupta, Eds. (Poughkeepsie, Mid-Hudson Chpt., Society of Plastics Engineers) 1987, pp. 463–70.Google Scholar
  11. 11.
    A. F. Rubira, J. D. Rancourt, M. L. Caplan, A. K. St. Clair, and L. T. Taylor, Chem. Mater., in press.Google Scholar
  12. 12.
    A. F. Rubira, J. D. Rancourt, M. L. Caplan, A. K. St. Clair, and L. T. Taylor, ACS- PMSE, 71, 509–511 (1994).Google Scholar
  13. 13.
    S. A. Ezzel, T. A. Furtsch, E. Khor, and L. T. Taylor, J. Polym. Sci. Poly. Chem. Ed., 91, 8651 (1983).Google Scholar
  14. 14.
    M. L. Caplan, D. M. Stoakley, and A. K. St. Clair, Proceed. ACS-PMSE, 69, 400–1 (1993).Google Scholar
  15. 15.
    A. Auerbach, J. Electrochem. Soc., 131, 937 (1984).CrossRefGoogle Scholar
  16. 16.
    S. Mazur and S. Reich, J. Phys. Chem. 90, 1365 (1986).CrossRefGoogle Scholar
  17. 17.
    S. Mazur, L. E. Manring, M. Levy, G. T. Dee, S. Reich, and C. E. Jackson, Metal. Plast. Vol. 1; K. L. Mittal and J. R. Susko, Eds., Plenum Press, New York, 1989, pp. 115–134.CrossRefGoogle Scholar
  18. 18.
    R. K. Boggess and L. T. Taylor, in Recent Advances in Polyimide Science and Technologies, W. D. Weber and M. R. Gupta, Eds., Mid-Hudson Chapter SPE, New York, 1987, pp. 463–70.Google Scholar
  19. 19.
    T. L. Wohlford, J. Schaaf, L. T. Taylor, T. A. Furtsch, E. Khor, and A. K. St. Clair, in Conductive Polymers. R. B. Seymour, Ed., Plenum Publishing Corp., New York, 1981, pp. 7–21.CrossRefGoogle Scholar
  20. 20.
    A. K. St. Clair, S. A. Ezzel, L. T. Taylor and H. G. Boston, “Electrically Conductive Polyimide Films, NASA Tech. Brief,” August 1993, pp. 57–58.Google Scholar
  21. 21.
    D. Gaulino et al. , Oxidation Resistant Reflective Surfaces for Solar Dynamic Power Generation in Near Earth Orbit, “NASA Technical Memorandum 88865”, 1986.Google Scholar
  22. 22.
    G. Schon, Acta Chem. Scand., 27, 2623 (1973).CrossRefGoogle Scholar
  23. 23.
    P. E. Larson, J. Electron Spectroscop. Relat. Phenom., 4, 213 (1974).CrossRefGoogle Scholar
  24. 24.
    C. J. Huang, C. C. Yen, and T. C. Chang, J. Appl. Polym. Sci., 42, 2237 (1991).CrossRefGoogle Scholar
  25. 25.
    C. J. Huang, C. C. Yen, and T. C. Chang, J. Appl. Polym. Sci., 42, 2267 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Adley F. Rubira
    • 2
  • James D. Rancourt
    • 1
  • Larry T. Taylor
    • 1
  1. 1.Department of ChemistryVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Departamento de QuimicaUniversidade Estadual de MaringáMaringá-PRBrazil

Personalised recommendations