Advertisement

Sourdough breads and related products

  • W. P. Hammes
  • M. G. Gänzle

Abstract

Grinding of cereals and addition of water results in the formation of a dough which, after some time, will turn into a sourdough characterized by acid taste, aroma and increased volume due to gas formation. This fermentation event may have been one of the first microbial processes employed by man and led to the use of sourdough for breadmaking. Baking of leavened bread can be traced back to Egypt in 1500 BC, and the study of the microbiology of sourdough has a history of nearly 100 years. Not all sourdoughs are subjected to baking. More fluid soured doughs are consumed in various parts of the world. Boza in Turkey and Mageu in Africa are examples of a group of raw foods that had once also a tradition in Europe. For example, in Scotland these were known as sawens or flummeries (Fenton, 1974). There are even smooth borderlines to beer-like beverages. These are considered as products of alcoholic fermentation performed by yeasts and require the digestion of the starch by amylases. Without specific technological precautions, however, it will always be, as in sourdough, a lactic acid bacteria (LAB)-yeast association that primarily develops in the cereal-derived substrates. An example is provided by ‘Berliner Weiße’ beer, which is characterized by a deliberate LAB-yeast fermentation and by the strong acid taste of the beer.

Keywords

Lactic Acid Bacterium Wheat Dough Sourdough Fermentation Sourdough Bread Heterofermentative Lactic Acid Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon. (1990) Sauerteig aus Isernhagen wird laufend überprüft. Bäckerzeitung, 90, 4–6.Google Scholar
  2. Anon. (1994) Bekanntmachung von weiteren Leitsätzen des Deutschen Lebensmittelbuches. Bundesanzeiger, 46, 7–8.Google Scholar
  3. Beccard, E. (1921) Beiträge zur Kenntnis der Sauerteiggärung. Zbl. F. Bakt. II. Abt., 54, 465–71.Google Scholar
  4. Barber, B., Ortola, C., Barber, S. & Fernandez, F. (1992) Storage of packaged white bread. III. Effects of sour dough and addition of acids on bread characteristics. Z. Lebensm. Unters. Forsch., 194, 442–9.CrossRefGoogle Scholar
  5. Böcker, G., Vogel, R.F. & Hammes, W.P. (1990) Lactobacillus sanfrancisco als stabiles Element in einem Reinzucht-Sauerteig-Präparat. Getreide Mehl und Brot, 44, 269–74.Google Scholar
  6. Böcker, G., Stolz, P. & Hammes, W.P. (1995) Neue Erkenntnisse zum Ökosystem und zur Physiologie der sauerteigtypischen Stämme Lactobacillus sanfrancisco und Lb. pontis. Getreide Mehl und Brot, 49, 370–4.Google Scholar
  7. Brummer, J.M. (1974) Bäckereitechnologische Maßnahmen zur Unterdrückung der Schimmelanfälligkeit von Brot. Getreide und Mehl und Brot, 28, 45–9.Google Scholar
  8. Budolfsen-Hansen, G. (1988) Gefriergetrocknete Starterkulturen für gesäuerte Backwaren. Int. Ztschr. Lebensm.-Technol. U. Verfahrenstechnik, 39, 597–602.Google Scholar
  9. Collar, C., Mascaros, A.F. & Benedito de Barber, C. (1992) Amino acid metabolism by yeasts and lactic acid bacteria during bread dough fermentation. Journal of Food Science, 57, 1423–7.CrossRefGoogle Scholar
  10. Corsetti, A., Gobbetti, M. & Smacchi, E. (1996) Antibacterial activity of sourdough lactic acid bacteria: isolation of a bacteriocin-like inhibitory substance from Lactobacillus sanfrancisco C57. Food Microbiology, 13, 447–56.CrossRefGoogle Scholar
  11. Damiani, P., Gobbetti, M., Cossignani, L., Corsetti, A., Simonetti, M.S. & Rossi, J. (1996) The sourdough microflora. Characterization of hetero-and homofermentative lactic acid bacteria, yeasts and their interactions on the basis of the volatile compounds produced. Lebensm. Wiss u. Technol., 29, 63–70.CrossRefGoogle Scholar
  12. Fenton, A. (1974) Sowens in Scotland. Folk-life, a Journal of Ethnological Studies, 12, 41–7.Google Scholar
  13. Gänzle, M.G., Hertel, C. & Hammes, W.P. (1995) Antimicrobial activity of lactobacilli isolated from sourdough, in Beijerinck Centennial; Microbial Physiology and Gene Regulation: Emerging Principles and Applications (eds W.A. Scheffers & J.P. van Dijken), Book of Abstracts, Delft University Press, The Hague, The Netherlands, pp. 380–1.Google Scholar
  14. Gänzle, M.G., Häusle, S. & Hammes, W.P. (1997) Wechselwirkungen zwischen Laktobazillen und Hefen des Sauerteiges. Getreide, Mehl und Brot, 51, 209–15.Google Scholar
  15. Gobbetti, M. & Corsetti, A. (1996) Co-metabolism of citrate and maltose by Lactobacillus brevis subsp. lindneri CB1 citrate-negative strain: effect on growth, end products and sourdough fermentation. Z. Lebensm. Unters. Forsch., 203, 82–7.CrossRefGoogle Scholar
  16. Gobetti, M., Simonetti, M.S., Rossi, J., Cossignani, A. & Damian, P. (1994) Free D- and L-amino acid evolution during sourdough fermentation and baking. Journal of Food Science, 59, 881–4.CrossRefGoogle Scholar
  17. Gobbetti, M., Smacchi, E. & Corsetti, A. (1996a) The proteolytic system of Lactobacillus sanfrancisco CB1: Purification and characterization of a proteinase, a dipeptidase, and an aminopeptidase. Applied and Environmental Microbiology, 62, 3220–6.Google Scholar
  18. Gobbetti, M., Corsetti, A., Mortelli, L. & Elli, M. (1996b) Expression of a-amylase gene from Bacillus stearothermophilus in Lactobacillus sanfrancisco. Biotechnology Letters, 18, 969–74.CrossRefGoogle Scholar
  19. Hamad, S.H., Böcker, G., Vogel, R.F. & Hammes, W.P. (1992) Microbiological and chemical analysis of fermented sorghum dough for Kisra production. Applied Microbiology and Biotechnology, 37, 728–31.CrossRefGoogle Scholar
  20. Hammes, W.P. (1991) Fermentation of non-dairy food. Food Biotechnology, 5, 293–303.CrossRefGoogle Scholar
  21. Hammes, W.P. & Vogel, R.F. (1977) Sauerteig in G. Müller, in Mikrobiologie der Lebensmittel, Lebensmittel pflanzlicher Herkunft (eds W. Holzapfel & H. Weber), Behr’s Verlag, Hamburg, pp. 201–85.Google Scholar
  22. Hammes, W.P., Stolz, P. & Gänzle, M.G. (1996) Metabolism of lactobacilli in traditional sourdoughs Advances in Food Science, 18, 176–84.Google Scholar
  23. Hansen, A., Lund, B. & Lewis, M.J. (1989a) Flavour of sourdough rye bread crumb. Lebensm. Wiss. u. Technol., 22, 141–4.Google Scholar
  24. Hansen, A., Lund, B. & Lewis, M.J. (1989b) Flavour production and acidification of sourdoughs in relation to starter culture and fermentation temperature. Lebensm. Wiss. u. Technol., 22, 145–9.Google Scholar
  25. Hansen, B. & Hansen, A. (1994) Volatile compounds in wheat sourdoughs produced by lactic acid bacteria and sourdough yeasts. Z. Lebensm. Unters. Forsch., 198, 202–9.CrossRefGoogle Scholar
  26. Holliger, W. (1902) Bakteriologische Untersuchungen über Mehlteiggärung. Zbl. F. Bakt. 77., 9, 305–12,361–71,473–83,521–37.Google Scholar
  27. Kitahara, K., Kaneko, T. & Goto, O. (1957) Taxonomy studies on the hiochi-bacteria, specific saprophytes of sake. I. Identification and classification of hiochi-bacteria. Journal of General and Applied Microbiology, 3, 102–10.CrossRefGoogle Scholar
  28. Kline, L. & Sugihara, F.T. (1971) Microorganisms of the San Francisco sour dough bread process. II. Isolation and characterisation of undescribed bacterial species responsible for the souring activity. Applied Microbiology, 21, 102–10.Google Scholar
  29. Knudsen, S. (1924) Über die Milchsäurebakterien des Sauerteigs and ihre Bedeutung für die Sauerteiggärung. Dissertation. Den. Kgl. Veterinaer-og Landbohoskoles Arsskrift.Google Scholar
  30. Kratochvil, J. & Holas, J. (1988) Use of a cereal protein substrate for characterization of proteolytic enzymes in rye sourdough. Getreide Mehl and Brot., 42, 166–9.Google Scholar
  31. Larsen, A.G., Vogensen, F.K. & Josephsen, J. (1993) Antimicrobial activity of lactic acid bacteria isolated from sourdough: purification and characterisation of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. Journal of Applied Bacteriology, 75, 113–22.Google Scholar
  32. Larsson, M. & Sandberg, A.S. (1991) Phytate reduction in bread containing oat flour, oat bran or rye bran. Journal of Cereal Science, 14, 141–9.CrossRefGoogle Scholar
  33. Liljeberg, H. & Björck, I. (1994) Bioavailability of starch in bread products. Postprandial glucose and insulin responses in healthy subjects and in vitro resistant starch content. European Journal of Clinical Nutrition, 48, 151–63.Google Scholar
  34. Liljeberg, H.G.M., Lönner, C.H. & Björck, I.M.E. (1995) Sourdough fermentation or addition of organic acids or corresponding salts to bread improves nutritional properties of starch in healthy humans. Journal of Nutrition, 125, 1503–11.Google Scholar
  35. Lönner, C., Preve-Akesson, K. & Ahrné, S. (1990) Plasmid contents of lactic acid bacteria isolated from different types of sourdoughs. Current Microbiology, 20, 201–7.CrossRefGoogle Scholar
  36. Lorenz, K.J. & Kulp, K. (1991) Handbook of Cereal Science and Technology, Marcel Dekker, New York.Google Scholar
  37. Martinez-Anaya, M.A. (1996) Enzymes and bread flavour. Journal of Agriculture and Food Chemistry, 44, 2469–80.CrossRefGoogle Scholar
  38. Neubauer, H., Glaasker, E., Hammes, W.P., Poolman, B. & Konings, W.N. (1994) Mechanism of maltose uptake and glucose excretion in Lactobacillus sanfrancisco. Journal of Bacteriology, 176, 3007–12.Google Scholar
  39. Ottogalli, G., Galli, A. & Foschino, R. (1996) Italian bakery products attained with sourdough: characterization of the typical sourdough flora. Advances in Food Science (CMTL), 18, 131–44.Google Scholar
  40. Röcken, W. & Spicher, G. (1993) Fadenziehende Bakterien-Vorkommen, Bedeutung, Gegenmaßnahmen. Getreide, Mehl und Brot, 47, 30–5.Google Scholar
  41. Röcken, W. & Voysey, P.A. (1995) Sourdough fermentation in bread making. Journal of Applied Bacteriology (Supplement), 79, 38–48.Google Scholar
  42. Röcken, W., Rick, M., Mack, H. & Brummer, J.M. (1992a) Versuche zur Kompensierung der Essigsäureverluste beim Trocknen von Sauerteigen. Getreide, Mehl und Brot, 46, 139–44.Google Scholar
  43. Röcken, W., Rick, M. & Reinkemeier, M. (1992b) Controlled production of acetic acid in wheat sour doughs. Z. Lebensm. Unters. Forsch., 195, 259–63.CrossRefGoogle Scholar
  44. Rothe, M. (1974) Aroma von Brot, Akademie Verlag, Berlin.Google Scholar
  45. Salovaara, H. & Goransson, M. (1983) Breakdown of phytic acid during production of acidified and non-acidified rye bread. Naringsforskning, 27, 97–101.Google Scholar
  46. Salovaara, H. & Valjakka, T. (1987) The effect of fermentation temperature, flour type and starter on the properties of sour wheat bread. International Journal of Food Science and Technology, 22, 591–7.Google Scholar
  47. Saunders, R.M., Ng, H. & Kline, L. (1972) The sugars of flour and their involvement in the San Francisco sour dough French bread process. Journal of Cereal Science, 49, 86–91.Google Scholar
  48. Souci, S.W., Fachmann, W. & Kraut, H. (1994) Food Composition and Nutrition Tables, 5th edn, Medpharm Scientific Publishers, Stuttgart.Google Scholar
  49. Spicher, G. & Nierle, W. (1988) Proteolytic activity of sourdough bacteria. Applied Microbiology and Biotechnology, 28, 487–92.CrossRefGoogle Scholar
  50. Spicher, G. & Stephan, H. (1987) Handbuch Sauerteig: Biologie, Biochemie, Technologie, Behr’s Verlag, Hamburg.Google Scholar
  51. Spicher, G., Schröder, R. & Stephan, H. (1980) Die Mikroflora des Sauerteiges. X. Mitteilung: Die backtechnische Wirkung der in ‘Reinzuchtsauern’ auftretenden Milchsäurebakterien (Genus Lactobacillus Beijerinck). Z. Lebensm. Unters. Forsch., 171, 119–24.CrossRefGoogle Scholar
  52. Stolz, P. (1995) Untersuchungen des Maltosemetabolismus von Laktobazillen aus Sauerteig. Dissertation an der Universität Hohenheim.Google Scholar
  53. Stolz, P., Böcker, G., Vogel, R.F. & Hammes, W.P. (1993) Utilisation of maltose and glucose by lactobacilli isolated from sourdough. FEMS Microbiology Letters, 109, 237–42.CrossRefGoogle Scholar
  54. Stolz, P., Vogel, R.F. & Hammes, W.P. (1995). Utilization of electron acceptors by lactobacilli isolated from sourdough. II. Lactobacillus pontis, L. reuteri, L. amylovorus, and L. fermentum. Z. Lebensm. Unters. Forsch., 201, 402–10.CrossRefGoogle Scholar
  55. Stolz, P., Hammes, W.P. & Vogel, R.F. (1996) Maltose-phosphorylase and hexokinase activity in lactobacilli from traditionally prepared sourdoughs. Advances in Food Science (CMTL), 18, 1–6.Google Scholar
  56. Sugihara, F.T. (1985) Microbiology of breadmaking, in Microbiology of Fermented Foods, Vol. 1 (ed. B.J.B. Wood), Elsevier Applied Science Publishers, New York, pp. 249–62.Google Scholar
  57. Tichaczek, P., Nissen-Meyer, J., Nes, I.F., Vogel, R.F. & Hammes, W.P. (1992) Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. Systematic and Applied Microbiology, 15, 460–8.Google Scholar
  58. Trüper, H.G. & de Clari, L. (1997) Taxonomic note: Necessary correction of specific epithets formed as substantives (nouns) “in apposition”. International Journal of Systematic Bacteriology, 47, 908–9.CrossRefGoogle Scholar
  59. Vogel, R.F., Böcker, G., Stolz, P., Ehrmann, M., Fanta, D., Ludwig, W., Pot, B., Kersters, K., Schleifer, K.H. & Hammes, W.P. (1994) Identification of Lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. International Journal of Systematic Bacteriology, 44, 223–9.CrossRefGoogle Scholar
  60. Wiese, B.G., Berger, R.G. & Diekmann, H. (1995) The influence of lactic acid bacteria on aroma components of wheat bread. Biospectrum, Special Issue, 3, 102 (PC 010).Google Scholar
  61. Wiese, B.G., Strohmar, W., Rainey, F.A. & Diekmann, H. (1996) Lactobacillus panis sp. nov., from sourdough with a long fermentation period, International Journal of Systematic Bacteriology, 46, 449–53.CrossRefGoogle Scholar

Copyright information

© Thomson Science 1998

Authors and Affiliations

  • W. P. Hammes
  • M. G. Gänzle

There are no affiliations available

Personalised recommendations