Advertisement

Thickeners of microbial origin

  • L. M. Harvey
  • B. McNeil

Abstract

The modern trend for quality convenience foods has led the food processing industries into development of new and more sophisticated food products and additives, which allow the consumer to produce ‘tasty’ meals with very little effort. Consequently, there have been rapid advances in food processing technologies over the past few decades, and what once was a relatively simple industry, in technical terms, structured mainly around canning, has become a highly complex and very scientific area.

Keywords

Junction Zone Microbial Origin Xanthomonas Campestris Ferment Food Food Hydrocolloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amankonah, O.J., Faulk, G.S., Jangaard, N.O. & Zandis, D.A. (1993) Rheological and textural evaluation of the functionality of hydrocolloids in low/no fat baked products. Cereal Foods World, 38(8), 630.Google Scholar
  2. Baird, J.K. & Pettitt, D.J. (1991) Biogums used in food and made by fermentation, in Biotechnology and Food Ingredients (eds I. Goldberg and R. Williams), Van Nostrand Reinhold, New York, pp. 223–63.Google Scholar
  3. Barbut, S. & Mittal, G.S. (1992) Use of carrageenans and xanthan gum in reduced fat breakfast sausages. Lebensmittel-wiss Technology, 25(6), 509–13.Google Scholar
  4. Betlach, M.R., Capage, M.A., Doherty, D.H., Hassler, R.A., Henderson, N.M., Vanderslice, R.W., Marelli, J.D. & Ward, M.B. (1987) Genetically engineered polymers: manipulation of xanthan biosynthesis, in Industrial Polysaccharides (ed. M. Yalpini), Elsevier, Amsterdam, pp. 35–50.Google Scholar
  5. Cairns, P., Miles, M.J. & Morris, V.J. (1987) Intermolecular binding of xanthan gum and carob gum. Nature, 322, 89–90.CrossRefGoogle Scholar
  6. Camelin, I., Lacroix, C., Paquin, C., Prevost, H., Cachon, R. & Divies, C. (1993) Effect of chelatants on gellan gel rheological properties and setting temperature for immobilisation of living Bifidobacteria. Biotechnology Progress, 9, 291–7.CrossRefGoogle Scholar
  7. Cheetham, N.W.H. & Nik Norma, N.M. (1989) Effect of pyruvate on viscosity properties of xanthan gum. Carbohydrate Polymers, 10, 55–60.CrossRefGoogle Scholar
  8. Choplin, L., Guernik, K. & Leduy, A. (1987) On the use of an extracellular microbial polysaccharide fermentation broth for improvement in bioreactor design, in Proceedings of the 4th European Congress of Biotechnology (eds O.M. Neijssel, R.R. van der Meer & K.Ch.A.M. Luyben), Elsevier, Amsterdam, p. 225.Google Scholar
  9. Colegrove, G.T. (1983) Agricultural applications of microbial polysaccharides. Industrial Engineering Chemical Products Research and Development, 22, 456–560.CrossRefGoogle Scholar
  10. Colegrove, G.T. (1991) Gellan gum fibres. European patent 0454373A2.Google Scholar
  11. Coviello, T., Kajiwara, K., Burchard, W., Dentini, M. & Crescenzi, V. (1986) Solution properties of xanthan. 1. Dynamic and static light scattering from native and modified xanthans in dilute solutions. Macromolecules, 19, 2826–31.CrossRefGoogle Scholar
  12. Craig, D.Q.M. & Gokal, D. (1995) An investigation into synergistic gel formation by xanthan gum and locust bean gum. Pharmaceutical Research (New York), 12(9), S207.Google Scholar
  13. Crescenzi, V. (1995) Microbial polysaccharides of applied interest: ongoing research activities in Europe. Biotechnology Progress, 11, 251–9.CrossRefGoogle Scholar
  14. Crescenzi, V., Dentini, M. & Corviello, T. (1990) Solution and gelling properties of microbial polysaccharides of industrial interest: the case of gellan gum, in Novel Biodegradable Microbial Polymers (ed. E.A. Dawes), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 277–84.Google Scholar
  15. Desphande, M.S., Rale, V.B. & Lynch, J.M. (1992) Aureobasidium pullulans in applied microbiology: a status report. Enzyme and Microbial Technology, 14, 514–27.CrossRefGoogle Scholar
  16. Dhami, R., Harding, S.E., Jones, T., Hughes, T., Mitchell, J.R. & Karmun To (1995) Physico-chemical studies on a commercial food-grade xanthan. 1. Characterisation by sedimentation velocity, sedimentation equilibrium and viscometry. Carbohydrate Polymers, 27, 93–9.CrossRefGoogle Scholar
  17. Dickinson, E., Ma, J. & Povey, M.J.W. (1994) Creaming of concentrated oil-in-water emulsions containing xanthan. Food Hydrocolloids,8(50), 481–97.CrossRefGoogle Scholar
  18. Duran, E., Costell, E., Izquierdo, L. & Duran, L. (1994) Low sugar bakery jams with gellan gum — guar gum mixtures. Influence of composition on texture. Food Hydrocolloids, 8(3–4), 373–81.CrossRefGoogle Scholar
  19. Easson, D.D. Jr, Peoples, O.P. & Sinsket, A.J. (1987) Biopolymer engineering: genome control of exopolysaccharide biosynthesis, in Industrial Polysaccharides (ed. M. Yalpani), Elsevier, Amsterdam, pp. 57–64.Google Scholar
  20. Empey, R.A. & Pettitt, D.J. (1973) Gum decontamination. UK patent 1 409 706, European patent 0 049 121 Al.Google Scholar
  21. Evans, N. (1986) Use of xanthan gum in water-based paints. Paint Resin, 54, 27–30.Google Scholar
  22. Ferrero, C., Martino, M.N. & Zaritzky, N.E. (1993) Effect of freezing rate and xanthan gum on the properties of corn starch and wheat flour pastes. International Journal of Food Science and Technology, 28(5), 481–98.Google Scholar
  23. Fitzgerald, E.E. (1983) Xanthan gum in textile printing applications. Papers of the National Technology Conference AATCC,pp. 306–13.Google Scholar
  24. Fryer, L.C., Aramouni, F.M. & Chambers, E. IV (1996) Xanthan, hydroxypropyl methyl cellulose and high fructose corn syrup sensory effects in a reduced calorie syrup model. Journal of Food Science, 61(1), 245–7, 252.CrossRefGoogle Scholar
  25. Gaymon, P.D., Amankonah, O.J. & Zdanis, D.A. (1994) Xanthan gum shortening replacement systems in low—no fat baking applications. Cereal Foods World,39(8), 641.Google Scholar
  26. Gibson, W. (1992) Gellan gum, in Thickening and Gelling Agents for Food (ed. A. Imeson), Blackie Academic and Professional, Glasgow, pp. 227–49.Google Scholar
  27. Gruter, M., Leeflang, B.R., Kuiper, J., Kamerling, J.P. & Vliegenthart, F.G. (1992) Structure of the exopolysaccharide produced by Lactococcus lactis subspecies cremoris H414 grown in a defined medium or skimmed milk. Carbohydrate Research, 231, 273–91.CrossRefGoogle Scholar
  28. Gruter, M., Leeflang, B.R., Kuiper, J., Kamerling, J.P. & Vliegenthart, F.G. (1993) Structural characterisation of the exopolysaccharide produced by Lactobacillus delbruckii subspecies bulgaricus grown in skimmed milk. Carbohydrate Research, 239, 209–26.CrossRefGoogle Scholar
  29. Hannigan K. (1984) Edible plastic. Food Engineering, 56(3), 98–9.Google Scholar
  30. Harding, N.E. & Patel, Y.N. (1993) Isolation of genes essential for the biosynthesis of gellan gum. Journal of the Federal American Society for Exploratory Biology (FASEB), 7(7), Al259.Google Scholar
  31. Harding, N.E., Cleary, J.M., Cabanas, D.K., Rosen, I.G. & Kang, K.S. (1987) Genetic and physical analysis of genes for xanthan gum biosynthesis in X. campestris. Journal of Bacteriology, 169, 2854–6.Google Scholar
  32. Harris, J.E. (1985) Gelrite as an agar substitute for the cultivation of Methanobacterium and Methanobrevibacter species. Applied and Environmental Microbiology,50, 1107–9.Google Scholar
  33. Hassler, R.A. & Doherty, D.H. (1990) Genetic engineering of polysaccharide structure: production of variants of xanthan gum in Xanthomonas campestris. Biotechnology Progress, 6, 182–5.CrossRefGoogle Scholar
  34. Holzwarth, G. and Prestridge, E.B. (1977) Multistranded helix in xanthan polysaccharide. Science, 197, 757–9.CrossRefGoogle Scholar
  35. Ielpi, L. (1981) Xanthan gum biosynthesis pyruvic and acetal residues. Biochemical and Biophysical Research Communications, 102, 1400–4.CrossRefGoogle Scholar
  36. Inatomi, S.-I., Jinbo, Y., Sato, T. & Teramoto, A. (1992) Isotropic-liquid crystal phase equilibrium in semi-flexible polymer solutions: effects of M.Wt. and ionic strength in polyelectrolyte solutions. Macromolecules, 25, 5013–19.CrossRefGoogle Scholar
  37. Jansson, P.E., Kenne, L. & Lindberg, B. (1975) Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydrate Research, 42, 275–82.CrossRefGoogle Scholar
  38. Kanombirira, S. & Kailasapathy, K. (1995) Effects of interactions of carrageenan and gellan gum on yields, textural and sensory attributes of cheddar cheese. Milchwissenschaft, 50(8), 452–8.Google Scholar
  39. Kawahara, K., Seydel, U., Matsuura, M., Danbara, H., Rietschel, E.T. & Zahringer, U. (1991) Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Letters, 292, 107–10.CrossRefGoogle Scholar
  40. Kawakami, K. & Norisuye, T. (1991) Second virial coefficient for charged rods: sodium xanthan in aqueous sodium chloride. Macromolecules, 24, 4898–903.CrossRefGoogle Scholar
  41. Kelco Division of Merck & Co. Inc. (1994) Xanthan gum: natural biogum for scientific water control, 5th Edition Technical Monograph.Google Scholar
  42. Kelco Division of Merck & Co. Inc. (1995) Gellan gum: multifunctional polysaccharide for texturising. Technical Monograph.Google Scholar
  43. Lambert, F., Milas, M. & Rinaudo, M. (1982) Gel permeation chromatography of xanthan gum using a light scattering detector. Polymer Bulletin, 7, 185–9.CrossRefGoogle Scholar
  44. Lecacheux, D., Mustiere, Y. & Panaras, R. (1986) Molecular weight of scleroglucan and other extracellular polysaccharides by size exclusion chromatography and low angle laser light scattering. Carbohydrate Polymers, 6, 477–93.CrossRefGoogle Scholar
  45. Levy, S., Schuyler, S.C., Maglothin, K.K. & Staehelin, L.A. (1996) Dynamic simulations of the molecular conformations of wild type and mutant xanthan polymers. Biopolymers, 38(2), 251–72.CrossRefGoogle Scholar
  46. Linn, C.C. & Cassida, L.E. Jr. (1984) Gelrite as a gelling agent in media for the growth of thermophilic microorganisms. Applied and Environmental Microbiology, 47, 427–9.Google Scholar
  47. Linton, J.D., Ash, S.G. & Huybrechts, L. (1991) Microbial polysaccharides, in Biomaterials Novel Materials from Biological Sources (ed. D. Byrom), Stockton Press, New York, pp.215–62.Google Scholar
  48. Ma, L. & Barbosa-Canovas, G.V. (1995a) Rheological properties of mayonnaise: Part I: Slippage at different oil and xanthan concentrations. Journal of Food Engineering, 25(3), 397–408.CrossRefGoogle Scholar
  49. Ma, L. & Barbosa-Canovas, G.V. (1995b) Rheological properties of mayonnaise: Part II: Flow and viscoelastic properties at different oil and xanthan gum concentrations. Journal of Food Engineering, 25(3), 409–25.CrossRefGoogle Scholar
  50. Margaritis, A. & Pace, G.W. (1985) Microbial polysaccharides, in Comprehensive Biotechnology, Vol. 3 (eds H.W. Blanch, S. Drew & D.I.C. Wang), Pergamon, Oxford, pp. 1005–44.Google Scholar
  51. McNeil, B. & Harvey, L.M. (1993) Viscous fermentation products. Critical Reviews in Biotechnology, 13(4), 275–304.CrossRefGoogle Scholar
  52. Melton, L.D., Mindt, L., Rees, D.A. & Sanderson, G.R. (1976) Covalent structure of extracellular polysaccharides from Xanthomonas campestris. Carbohydrate Research, 46, 245–6.CrossRefGoogle Scholar
  53. Miller, R.A. & Hoseney, R.C. (1993) The role of xanthan in white layer cakes. Cereal Chemistry, 70(5), 585–8.Google Scholar
  54. Moorhouse, R. (1987) Structure/property relationships of a family of microbial polysaccharides, in Industrial Polysaccharides (ed. M. Yalpani), Elsevier, New York, pp. 187–206.Google Scholar
  55. Moorhouse, R., Walkinshaw, M.D. & Arnott, S. (1977). Xanthan gum — molecular conformation and interactions, in Extracellular Microbial Polysaccharides (ed. P.A. Sandford), ACS Symposium Series, no. 45. American Chemical Society, Washington, DC, pp. 90–102.CrossRefGoogle Scholar
  56. Moorhouse, R., Colegrove, G.T., Sandford, P.A., Baird, J.K. & Kang, K.S. (1981) PS-60: a new gel forming polysaccharide, in Solution Properties of Polysaccharides (ed. P.A. Brandt), ACS Symposium Series, no. 150, American Chemical Society, Washington, DC, pp. 111–23.CrossRefGoogle Scholar
  57. Morris, E.R. (1987) Organoleptic properties of food polysaccharides in thickened systems, in Industrial Polysaccharides (ed. M. Yalpani), Elsevier, New York, pp. 225–38.Google Scholar
  58. Nakamura, K., Harada, K. & Tanaka, Y. (1993) Viscoelastic properties of aqueous gellan solutions: the effects of concentration on gelation. Food Hydrocolloids, 7(5), 435–47.CrossRefGoogle Scholar
  59. Nardin, R. & Vincedon, M. (1989) Isotopic exchange study of the scleroglucan chain in solution. Macromolecules, 22, 3551–4.CrossRefGoogle Scholar
  60. Nienow, A.W. (1990) Agitators for mycelial fermentations. Trends in Biotechnology, 8, 224–31.CrossRefGoogle Scholar
  61. Okamoto, T., Kubota, K. & Kuwahara, N. (1993) Light scattering of gellan gum. Food Hydrocolloids, 7(5), 363–71.CrossRefGoogle Scholar
  62. Oosterhuis, N.M.G. & Koerbs, K. (1987) Method and reactor vessel for the fermentative preparation of polysaccharides. European Patent 0 249 288.Google Scholar
  63. Oosterhuis, N.M.G. & Meyer, P.D.A. (1987) A novel bioreactor for the production of viscous polymers, in Proceedings of the 4th European Congress of Biotechnology (eds O.M. Neijssel, R.R. van der Meer & K.Ch.A.M. Luyben), Elsevier, Amsterdam. p. 240.Google Scholar
  64. Papageorgiou, M. & Kasapis, S. (1995) The effect of added sucrose and corn syrup on the physical properties of gellan — gelatine mixed gels. Food Hydrocolloids,9(3), 211–20.CrossRefGoogle Scholar
  65. Paradossi, G. & Brandt, D.A. (1982) Light scattering study of a series of xanthan fractions in aqueous solutions. Macromolecules, 15, 874–9.CrossRefGoogle Scholar
  66. Parker, A., Gunning, P.A., Ng, K. & Robins, M.M. (1995) How does xanthan stabilise salad dressings? Food Hydrocolloids,9(4), 333–42.CrossRefGoogle Scholar
  67. Philips, J.C., Miller, J.W., Wernau, W.C., Tate, B.E. & Auerback, M.H. (1982) New high pyruvate xanthan for enhanced oil recovery. Society for Petroleum Engineers, #10617, 217–30.Google Scholar
  68. Pollock, T.J. (1993) Gellan related polysaccharides and the genus Sphingomonas. Journal of General Microbiology, 139, 1939–45.Google Scholar
  69. Pszczola, D.E. (1993) Gellan gum wins IFT’s food technology industrial achievement award. Food Technology, 47(2), 94–6.Google Scholar
  70. Rao, S.J., Prasad, M.S. & Rao, G.V. (1993) Effect of xanthan on the quality of bread. Journal of Food Science and Technology, 30(4), 265–8.Google Scholar
  71. Reina, J., Bassa, A., Llompart, I., Portela, D. & Sorrell, N. (1991) Infections with Pseudomonas paucimobilis: report of four cases and review. Review of Infectious Diseases,13, 1072–6.CrossRefGoogle Scholar
  72. Rinaudo, M. (1988) Gelation of ionic polysaccharides, in Gums and Stabilizers for the Food Industry-4 (eds G.O. Phillips, P.A. Williams & D.J. Wedlock), IRL Press, Washington, DC, pp. 173–81.Google Scholar
  73. Rinaudo, M. & Milas, M. (1987) On the properties of polysaccharides. Relation between chemical structure and physical properties, in Industrial Polysaccharides (ed. M. Yalpani), Elsevier, Amsterdam, pp. 217–23.Google Scholar
  74. Robijn, G.W., Van den Berg, D.J.C., Haas, H., Kamerling, J.P. & Vliegenthart, J.F.G. (1995a) Determination of the structure of the exopolysaccharide produced by Lactobacillus sake 0–1. Carbohydrate Research, 276, 117–36.CrossRefGoogle Scholar
  75. Robijn, G.W., Van den Berg, D.J.C., Haas, H., Kamerling, J.P. & Vliegenthart, T.F.G. (1995b) The structure of the exopolysaccharide produced by Lactobacillus helveticus 766. Carbohydrate Research, 276, 137–54.CrossRefGoogle Scholar
  76. Rye, A.R., Drozd, J.W., Jones, C.W. & Linton, J.D. (1988) Growth efficiency of Xanthomonas campestris in continuous culture. Journal of General Microbiology, 134, 1055–61.Google Scholar
  77. Sandford, P.A., Cottrell, I.W. & Pettitt, D.J. (1984) Microbial polysaccharides: new products and their commercial applications. Pure and Applied Chemistry, 56, 879–92.CrossRefGoogle Scholar
  78. Sato, T., Norisuye, T. & Fujita, H. (1984) Double-stranded helix of xanthan: dimensional and hydrodynamic properties in 0.1 M aqueous sodium chloride. Macromolecules, 17, 2696–700.CrossRefGoogle Scholar
  79. Shand, P.J., Sofos, J.N. & Schmidt, G.R. (1993) Properties of algin-calcium and salt-phosphate structured beef rolls with added gums. Journal of Food Science, 58(6), 1224–30.CrossRefGoogle Scholar
  80. Shigeta, J.-I., Sato, K., Tanaka, S., Nakayama, M. & Mili, M. (1996) Efficient plant regeneration of asparagus from in vitro multiplied shoot explants using gellan gum and glucose. Plant Science, 113, 99–104.CrossRefGoogle Scholar
  81. Shimada, K., Okada, H., Matsuo, K. & Yoshioka, S. (1996) Involvement of chelating action and viscosity in the antioxidative effect of xanthan in an oil-water emulsion. Bioscience, Biotechnology and Biochemistry, 60(1), 125–7.CrossRefGoogle Scholar
  82. Shimomura, K. & Kamada, H. (1986) The role of medium gelling agents in plant tissue culture. Plant Tissue Culture, 3, 38–41.Google Scholar
  83. Shungu, D., Valiant, M., Tutlane, V., Weinberg, E., Weissberger, B., Koupal, L., Gadebusch, H. & Stapely, E. (1983) Gelrite as an agar substitute in bacteriological media. Applied and Environmental Microbiology, 46, 840–5.Google Scholar
  84. Smith, I.H., Symes, K.C., Lawson, C.J. & Morris, E.R. (1987) Influence of the pyruvate content of xanthan on macromolecular association in solution. International Journal of Biological Macromolecules, 3, 129–31.CrossRefGoogle Scholar
  85. Sutherland, I.W. (1988) Exopolysaccharides: biosynthetic mechanisms and their products, in Proceedings of the 8th International Biotechnology Symposium (eds G. Durand, L. Bibichon & J. Florent), Societé Français Microbiologie, Paris, France, pp. 1045–56.Google Scholar
  86. Taurhesia, S. (1992) Exopolysaccharide production by submerged culture of the fungus Sclerotium gulcanicum. PhD Thesis, University of Strathclyde.Google Scholar
  87. Thorne, L., Tansey, L. & Pollock, T.J. (1987) Clustering of mutation blocking synthesis of xanthan gum by X. campestris. Journal of Bacteriology, 169, 3593–7.Google Scholar
  88. Watase, M. & Nishinari, K. (1993) Effect of potassium ions on the rheological and thermal properties of gellan gum gels. Food Hydrocolloids, 7(5), 449–56.CrossRefGoogle Scholar
  89. Wernau, W.C. (1982) Xanthomonas biopolymer for use in displacement of oil from partially depleted reservoirs. US Patent 4340678.Google Scholar
  90. Whitcomb, P.J. & Macosko, C.W. (1978) Rheology of xanthan gum. Journal of Rheology, 22(5), 493–505.CrossRefGoogle Scholar
  91. Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T. & Yamamoto, H. (1990) Proposals of Sphingomonas paucimobilis gen.nov. and comb.nov., Sphingomonas parapaucimobilis sp.nov., Sphingomonas yanoikuyae sp.nov., Sphingomonas adhaesiva sp.nov., Sphingomonas capsulata comb.nov., and two genospecies of the genus Sphingomonas. Microbiology and Immunology, 34, 99–119.Google Scholar
  92. Yoshida, H. & Takahashi, M. (1993) Structural change of gellan hydrogel induced by annealing. Food Hydrocolloids, 7(5), 387–95.CrossRefGoogle Scholar
  93. Yuguchi, Y., Mimura, M., Kitamura, S., Urakawa, H. & Kajiwara, K. (1993) Structural characteristics of gellan in aqueous solution. Food Hydrocolloids, 7(5), 373–85.CrossRefGoogle Scholar
  94. Zhan, D.F., Ridout, M.J., Brownsey, G.J. & Morris, V.J. (1993) Xanthan — locust bean interactions and gelation. Carbohydrate Polymers, 21(1), 53–8.CrossRefGoogle Scholar

Copyright information

© Thomson Science 1998

Authors and Affiliations

  • L. M. Harvey
  • B. McNeil

There are no affiliations available

Personalised recommendations