Advertisement

Minimum Weight Triangulations

  • Yin-Feng Xu
Chapter

Abstract

A triangulation of a given set S of n points in the plane is a maximal set of non-crossing line segments (called edges) which have both endpoints in S. A triangulation partitions the interior of the convex hull of the given point set into triangles. It is used in many areas of engineering and scientific applications such as finite element methods, approximation theory, numerical computation, computer-aided geometric design, and etc.

Keywords

Discrete Comput Geom Computational Geometry Delaunay Triangulation Convex Polygon Simple Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. Aichholzer,F. Aurenhammer,S. Cheng, N. Katoh, G. Rote, M. Taschwer and Y.F. Xu, Triangulations intersect nicely, Discrete Comput Geom 16:(1996)339–359.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    O. Aichholzer, F. Aurenhammer, G. Rote, and M. Taschwer, Triangulations intersect nicely, Proc. 11th Ann. ACM Symp.on Computational Geornetry, (1995) pp. 220–229.Google Scholar
  3. [3]
    O. Aichholzer, F. Aurenhammer, and G. Rote, Optimal graph orientation with storage applications, SFB-Report F003–51 (Optimierung und Kontrolle), TU Graz, Austria, (1995).Google Scholar
  4. [4]
    O. Aichholzer, F. Aurenhammer, G. Rote, and Y.F. Xu, Constant-level greedy triangulation approximate the MWT well, Journal of Combinatorial Optimization, to appear.Google Scholar
  5. [5]
    E. Anagnostou and D. Corneil, Polynomial-time instances of the minimum weight triangulation problem, Computational Geometry: theory and Appications 3(1993)247–259.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    P. Belleville, M. Keil, M. McAllister, and J. Snoeyink, On computing edges that are in all minimum-weight triangulations, Proc. 12th Ann. ACM Symp.on Computational Geometry, (1996) pp. V7 - V8.Google Scholar
  7. [7]
    M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell, and T.S. Tan, Edge insertion for optimal triangulations, Discrete Comput Geom: 10 (1993) pp. 47–65.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    M. Bern and D. Eppstein, Mesh generation and optimal triangulation, in D.-Z. Du, F.K. Hwang(ed.) Computing in Euclidean Geometry, (Lecture Notes Series in Computing 4, World Scientific),(1995) pp.47–123.Google Scholar
  9. [9]
    B. Bollobas, Graph Theory. An Introductory Course, ( Springer-Verlag, Berlin, 1979 ).zbMATHGoogle Scholar
  10. [10]
    P. Bose, L. Devroye, and W. Evans, Diamonds are not a minimum weight triangulation’s best friend, Proc.8th Canadian Conf. on Computational Geometry (1996)pp.68–73.Google Scholar
  11. [11]
    S.W. Cheng, N. Katoh, and M. Sugai, A study of the LMT-skeleton, Proc.Int.Symp.on Algorithms and Computation (ISAAC), (Lecture Notes in Computer Science 1178, Springer Verlag,l996)pp.256–265.Google Scholar
  12. [12]
    S.W. Cheng, M.J. Golin, and J.C.F. Tsang, Expected-case analysis of β-skeletons with applications to the construction of minimum-weight triangulations, Proc. 7th Canadian Conf. on Computational Geometry, (1995)pp.279–283.Google Scholar
  13. [13]
    S.W. Cheng and Y.F. Xu, Constrained independence system and triangulations of planar point sets, in: D.Z.Du, M.Li, (eds.), Computing and Combinatorics, (Proc. First Ann. Int. Conf., COCOON’95, Lecture Notes in Computer Science 959, Springer-Verlag, 1995 ) pp. 41–50.Google Scholar
  14. [14]
    S.W. Cheng and Y.F. Xu, Approaching the largest β-skeleton within a minimum-weight triangulation, Proc. 12th Ann. ACM Symp. on Computational Geometry, (1996) pp. 196–203.Google Scholar
  15. [15]
    M. Denny and C. Sohler, Encoding a triangulation as a permutation of its point set, (Manuscript, Univ.des Saarlandes, Saarbruecken, Germany, 1997 ).Google Scholar
  16. [16]
    M. Dickerson, R.L. Drysdale, S. McElfresh, and E. Welzl, Fast greedy triangulation algorithms, Proc. 10th Ann. ACM Symp. Computational Geometry (1994)211–220.Google Scholar
  17. [17]
    M.T. Dickerson and M.H. Montague, A (usually?) connected subgraph of the minimum weight triangulation, Proc. 12th Ann. ACM Symp. on Computational Geometry, (1996) pp. 204–213.Google Scholar
  18. [18]
    H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs on Theoretical Computer Science 10, (Springer-Verlag, 1987 ).zbMATHGoogle Scholar
  19. [19]
    H. Edelsbrunner and T.S. Tan, A quadratic time algorithm for the min-max length triangulation, SIAM J.Comput. 22(1993)pp.527–551.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    H. Edelsbrunner, T.S. Tan and R. Waupotitsch, A polynomial time algorithm for the minmax angle triangulation, Proc.6th ACM Symp. on Computational Geometry, (1990) pp. 44–52.Google Scholar
  21. [21]
    D. Eppstein, Approximating the minimum weight steiner triangulation, Discrete Comput Geom 11(1994)pp.163–194.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    D. Eppstein, The farthest point Delaunay triangulation minimizes angles, Comput Geom Theory Appl. 1(1992)pp.143–148.zbMATHMathSciNetGoogle Scholar
  23. [23]
    A. Garcia, M. Noy, and J. Tejel, Lower bounds for the number of crossing-free subgraphs of K n, Proc. 7th Canadian Conf. on Computational Geometry, (1995)pp.97–102.Google Scholar
  24. [24]
    M. Garey and D. Johnson, Computers and Intractability. A Guide to the Theory of NP-completeness, (Freeman, 1979 ).zbMATHGoogle Scholar
  25. [25]
    P.D. Gilbert, New results in planar triangulation, Report R-850, Coordinated Science Laboratory, (University of Illinois, 1979 ).Google Scholar
  26. [26]
    S.A. Goldman, A space efficient greedy triangulation algorithm, MIT Technical Report,(RN. MIT/LCS/TM-336, 1988 ).Google Scholar
  27. [27]
    L.S. Heath and S.V.Pemmaraju, New results for the minimum weight triangulation problem, Algorithmica12 (1994), pp. 533–552.CrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    T.C. Hu, Combinatorial Algorithms, (Addison Wesley, 1982 ).Google Scholar
  29. [29]
    T.C. Hu and A.C. Tucker, Optimal computer search trees and variable-length alphabetical codes, SIAM J. Appl. Math. 21(4), (1971)pp. 514–532.CrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    K. Jansen, One strike against the min-max degree triangulation problem, Computational Geometry: Theory and Applications, 3(1993), 107–120.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    M. Keil, Computing a subgraph of the minimum weight triangulation, Computational Geometry: Theory and Applications, 4 (1994), 13–26.zbMATHMathSciNetGoogle Scholar
  32. [32]
    D.G. Kirkpatrick and J.D. Radke, A framework for computational morphology, in:G.T.Toussaint(ed.), Computational Geometry, (ElsevierAmsterdam, 1985)217–248.Google Scholar
  33. [33]
    G.T. Klincsek, Minimal triangulations of polygonal domains, Ann. Discrete Math.9(1980), 127–128.CrossRefMathSciNetGoogle Scholar
  34. [34]
    C. Levcopoulos, An Ω \(\Omega \left( {\sqrt n } \right)\) lower bound for the nonoptimality of the greedy triangulation, Information Processing Letters 25(1987)pp. 247–251.CrossRefMathSciNetGoogle Scholar
  35. [35]
    C. Levcopoulos and D. Krznaric, Quasi-greedy triangulations approximating the minimum weight triangulation, Proc. 7th Ann. ACM-SIAM Symp. on Discrete Algorithms, (1996)pp.392–401.Google Scholar
  36. [36]
    C. Levcopoulos and A. Lingas, Greedy triangulation approximates the minimum weight triangulation and can be computed in linear time in the average case, Report LU-CS-TR: 92–105, ( Dept. of Computer Science, Lund University, 1992 ).Google Scholar
  37. [37]
    C. Levcopoulos and A. Lingas, On approximation behavior of the greedy triangulation for convex polygons, Algorithmica 2 (1987), 175–193.CrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    A. Lingas, A new heuristic for the minimum weight triangulation, SIAM J. Algebraic and Discrete Methods,8(1987)pp.646–658.MathSciNetGoogle Scholar
  39. [39]
    A. Lingas, The greedy and Delaunay triangulations are not bad in the average case and minimum weight triangulation of multi-connected polygons is NP-complete, Foundations of Computation Theory, Lecture Notes in Computer Science, 158(Springer - Verlag, Berlin, 1983 ), pp. 238–250.Google Scholar
  40. [40]
    E.L. Lloyd, On triangulations of a set of points in the plane, Proceedings of the Eighteenth IEEE Symposium on Foundations of Computer Science(1977), pp.228–240.Google Scholar
  41. [41]
    H. Meijer and D. Rappaport, Computing the minimum weight triangulation for a set of linearly ordered points, Information Processing Letters, 42(1992)pp.35–38.CrossRefzbMATHMathSciNetGoogle Scholar
  42. [42]
    A. Mirzain, C.A. Wang and Y.F. Xu, On stable line segments in triangulations, Proc. 8th Canadian Conf. Computational Geometry, (1996)pp.68–73.Google Scholar
  43. [43]
    D.A. Plaisted and J. Hong, A heuristic triangulation algorithm, J. Algorithms, 8(1987)pp.405–437.CrossRefzbMATHMathSciNetGoogle Scholar
  44. [44]
    V.T.Rajan, Optimality of the Delaunay triangulation in R d, Discrete Comput Geom, 12(1994)pp.189–202.CrossRefzbMATHMathSciNetGoogle Scholar
  45. [45]
    M.I. Shamos and D. Hoey, Closest point problems, Proc.l6th IEEE Symp. Foundations of Computer Science,(1975)pp. 151–162.Google Scholar
  46. [46]
    C.A. Wang, F. Chin, and Y.F. Xu, A new subgraph of minimum weight triangulation, Journal of Combinatorial Optimization, Vol.1, No. 2 (1997) pp. 115–127.CrossRefzbMATHMathSciNetGoogle Scholar
  47. [47]
    Y.F. Xu, Minimum weight triangulation problem of a planar point set, Ph.D. Thesis, (Institute of Applied Mathematics, Academia Sinica, Beijing, 1992 ).Google Scholar
  48. [48]
    Y.F. Xu, On stable line segments in all triangulations, Appl.Math.-JCU, 11B, No.2(1996)pp. 235–238.zbMATHGoogle Scholar
  49. [49]
    Y.F. Xu and D. Zhou, Improved heuristics for the minimum weight triangulation, Acta Mathematics of Applicatae SinicaVol. 11, No. 4 (1995) pp. 359–368.CrossRefzbMATHMathSciNetGoogle Scholar
  50. [50]
    B.T. Yang, Y.F. Xu, and Z.Y. You, A chain decomposition algorithm for the proof of a property on minimum weight triangulations, Proc. 5th Int. Symp. on Algorithms and Computation (ISAAC ‘84), (Lecture Notes in Computer Science 834, Springer-Verlag, 1994)pp.423–427.Google Scholar
  51. [51]
    F. Yao, Speed-up dynamic programming, SIAM J. Alg. Disc. Meth,No.4(1982)pp.532–540.Google Scholar
  52. [52]
    P. Yoeli, Compilation of data for computer-assisted relief cartography, in J. C. Davis, M. J. McCullagh, (eds.), Display and Analysis of Spatial Data, (Wiley, New York, 1975)pp.352–367.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Yin-Feng Xu
    • 1
  1. 1.School of ManagementXi’an Jiaotong UniversityXi’anP.R.China

Personalised recommendations