Advertisement

Reducing the Number of AD Passes for Computing a Sparse Jacobian Matrix

  • Shahadat Hossain
  • Trond Steihaug
Chapter

Abstract

A reduction in the computational work is possible if we do not require that the nonzeros of a Jacobian matrix be determined directly. If a column or row partition is available, the proposed substitution technique can be used to reduce the number of groups in the partit1ion further. In this chapter, we present a substitution method to determine the structure of sparse Jacobian matrices efficiently using forward, reverse, or a combination of forward and reverse modes of AD. Specifically, if it is true that the difference between the maximum number of nonzeros in a column or row and the number of groups in the corresponding partition is large, then the proposed method can save many AD passes. This assertion is supported by numerical examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Shahadat Hossain
  • Trond Steihaug

There are no affiliations available

Personalised recommendations