Advertisement

Ensembles De Zéros, Ensembles Pics Pour A(D) et A∞(D)

  • Anne-Marie Chollet
Part of the Progress in Mathematics book series (PM, volume 4)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    D. Burns, and E.L. Stout. Extending functions from submanifolds on boundary. Duke Math. J. 43 (1976), 391–403.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    J. Chaumat, et A.-M. Chollet. Ensembles de zéros, ensembles pics et d’interpolation pour A(D). Actes du Colloque d'Anal. Harm. et rompZ. 1977. La Garde-Freinet. (Laboratoire de Math. Pures de Marseille}.Google Scholar
  3. [3]
    J. Chaumat, et A.-M. Chollet. Ensembles pics pour A(D). Ann. Inst. Fourier. 29 (1979).Google Scholar
  4. [4]
    A.-M. Chollet. Ensembles de zéros à la frontiére de fonctions analytiques dans des domaines strictement pseudoconvexes. Ann. Inst. Fourier. 26 (1976), 51–80.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    B. Cole, and R.M. Range. A-measures on complex manifolds and some applications. J. Funct. Anal. 11 (1972), 393–400.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    A.M. Davie, and B.K. Øksendal. Peak interpolation sets for some algebras of analytic functions. Pacifia J. Math. 41 (1972), 81–87.CrossRefGoogle Scholar
  7. [7]
    J. Détraz. Approximation et interpolation dans un domaine pseudoconvexe. C.R. Aaad. Sa. Paris. 277 (1973), 583–586zbMATHGoogle Scholar
  8. [8]
    M. Hakim, et N. Sibony. Ensembles pics dans des domaines strictement pseudoconvexes. Duke Math. J. (1978).Google Scholar
  9. [9]
    G.M. Henkin, and E.M. Čirka. Boundary properties of holomorphic functions of several complex variables. J. Soviet Math. 5 (1976), 612–687.CrossRefzbMATHGoogle Scholar
  10. [10]
    G.M. Henkin, and A.E. Tumanov. C.R. Ecole d’été à Drogobytch (1974). (en russe).Google Scholar
  11. [ll]
    K. Hoffman. Banaah spaaes of analytia funations, Prentice Hall, New Jersey (1962).Google Scholar
  12. [12]
    N. Kerzman, Hölder and LP estimates for solutions of ∂̄u = f in strongly pseudoconvex domains. Comm. Pure and Appl. Math. 24 (1971), 301–379.CrossRefMathSciNetGoogle Scholar
  13. [13]
    B.I. Koremblum. Functions holomorphic in a disk and smooth in its closure. Soviet Math. Dokl. 12 (1971), 1312–1315.Google Scholar
  14. [14]
    A. Nagel. Smooth zero sets and interpolation sets for some algebras of holomorphic functions on strictly peudoconvex domains. Duke Math. J. 43 (1976), 323–348.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    A. Nagel, and W. Rudin, Local boundary behavior of bounded holomorphic functions. Can. J. Math. 30 (1978), 583–592.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    W.P. Novinger. Holomorphic functions with infinitely differentiable boundary values. Illinois J. Math. 15 (1971), 80–90.zbMATHMathSciNetGoogle Scholar
  17. [17]
    R.M. Range, Approximation to bounded holomorphic functions on stricly pseudoconvex domains. Pac. J. Math. 41. (1972), 203–213.CrossRefMathSciNetGoogle Scholar
  18. [18]
    W. Rudin, Peak interpolation sets of classe C1. Pac. J. Math. 75 (1978), 267–279.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    E.L. Stout, A Rudin-Carleson theorem on balls. (non publiè).Google Scholar
  20. [20]
    B.A. Taylor, and D.L. Williams. Ideals in rings of analytic functions with smooth boundary values. Canadian J. Math. 22 (1970), 1266–1283.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [2l]
    B.A. Talylor, and D.L. Williams. The peak sets of Am. Proc. Amer. Math. Soc. 24 (1970), 604–605.MathSciNetGoogle Scholar
  22. [22]
    R.E. Valskii. On measures orthogonal to analytic functions in ℂn. Soviet Math. Dokl. 12 (1971), 808–812.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Anne-Marie Chollet
    • 1
  1. 1.Université de Paris-SudOrsayUSA

Personalised recommendations