Advertisement

Quelques Propriétés du Prédual de H∞

  • Jacques Chaumat
Chapter
Part of the Progress in Mathematics book series (PM, volume 4)

Abstract

Soit D le disque unité du plan complexe, T le tore unité du plan complexe, m la me sure de Lebesgue sur T. Soit A(D) l’algèbre des fonctions holomorphes dans D et continues sur DuT, H∞ l’algebre des fonctions holomorphes et bornées dans D.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    E. Amar, Sur un théorème de Mooney relatif aux fonctions analytiques bornées. Pacific J. Math. 16 (1973), 191–194.MathSciNetGoogle Scholar
  2. [2]
    E. Amar, E et A. Lederer. Points exposées de la boule unité de H (D). C.R. Acad. Sc. Paris. 272 (1971), 1449–1452.zbMATHGoogle Scholar
  3. [3]
    T. Ando. Uniqueness of predual of H. Preprint.Google Scholar
  4. [4]
    Bui Doan Khanh. Les A-mesures sur le tore de dimension 2 et le calcul symbolique de deux contractions permutables. J. Funct. Anal. 15 (1974), 33–44.CrossRefzbMATHGoogle Scholar
  5. [5]
    J. Chaumat. Adhérence faible étoile d’algèbres de fractions rationnelles. Thèse Univ. Paris-Sud, 1975.Google Scholar
  6. [6]
    J. Chaumat. Quelques propriétés du couple d’espaces vectoriels (L1(m)/H∞⊥, H). Prépublication du département des mathématiques, Univ. Paris-Sud. Google Scholar
  7. [7]
    J. Chaumat. Unicité de prédual. Preprint.Google Scholar
  8. [8]
    J. Chaumat. Non publié.Google Scholar
  9. [9]
    I. Cnop, et F. Delbaen. A Dunford-Pettis theorem for L1/H∞⊥. Wrije Universiteit, Brussel (1975). Preprint. Google Scholar
  10. [l0]
    B. Cole, and R.M. Range. A measures on complex manifolds and some applications. J. Fund. Anal. 11 (1972), 393–400.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [ll]
    F. Delbean. Weakly compact sets in L1/H01. Universiteit, Brussel (1975). Preprint.Google Scholar
  12. [12]
    T.W. Gamelin. An abstract Kahane theorem (1975). Preprint.Google Scholar
  13. [13]
    T. W. Gamelin. Uniform algebras. Prentice Hall series in Modern Analysis (1969).zbMATHGoogle Scholar
  14. [14]
    T.W. Gamelin, and J. Garnett. Distinguished homomorphism and Fiber algebra. Amer. J. Math. 42 (1970), 455–474.CrossRefMathSciNetGoogle Scholar
  15. [15]
    A. Grothendieck. Caractérisation vectorielle métrique des espaces L1. Canadian J. Math. (1955), 552–561.Google Scholar
  16. [16]
    V.P. Havin. The spaces H and L1/H01 (Investigations on linear operators and theory of functions IV). Zap. Naucn. Sem. Leningrad Otdel. Math. Inst. Steklov. 39 (1974), 120–140. (en russe).MathSciNetGoogle Scholar
  17. [17]
    E. Heard. A sequential F. and M. Riesz theorem. Proc. Amer. Math. Soc. 18 (1967), 832–835.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    K. Hoffman. Banach spaces of analytic functions. Prentice Hall series in modern analysis (1962).zbMATHGoogle Scholar
  19. [19]
    T. Ito. On uniqueness of preduals. Notices Amer. Math. Soc. 25 (1978), A–294.Google Scholar
  20. [20]
    J.-P. Kahane. Another theorem on bounded analytic functions. Proc. Amer. Math. Soc. 18 (1967), 827–831.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    M.I. Kadec, and A. Pełczyński. Bases, Lacunary sequences and complemented subspaces in the spaces Lp. Studia Math. 2 (1962), 161–179.Google Scholar
  22. [22]
    S. V. Kisliakov. On the conditions of Dunford-Pettis. Pełczyński and Grothendieck. Dokl. Akad. Nauk. SSSR. 225 (1975), 1252–1255.Google Scholar
  23. [23]
    M. Mooney. A theorem on bounded analytic functions. Pacific J. Math. 43 (1972), 457–462.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    P. Wojtasczyck. On projections in spaces of analytic functions with applications. Warszawa 1977. Preprint.Google Scholar
  25. [25]
    L. Zalcman. Bounded analytic functions on domains of infinite connectivity. Trans. Amer. Math. Soc. 144 (1969), 241–270.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Jacques Chaumat
    • 1
  1. 1.Université de Paris-SudOrsayUSA

Personalised recommendations