Point Evaluations, Approximation in the Mean and Analytic Continuation

  • James E. Brennan
Part of the Progress in Mathematics book series (PM, volume 4)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Bagby, Quasi-topologies and rational approximation, J. Funational Analysis. 10(1972), 259–268.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    L. Bers, An approximation theorem, J. Analyse Math. 14(1965), 1–14.CrossRefzbMATHMathSciNetGoogle Scholar
  3. (3]
    A. Beurling, Analytic continuation across a linear boundary, Acta Math. 128(1972), 153–182.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    A. Beurling, Quasinalyticity and general distributions, Lecture Notes, Stanford Univ. (1961).Google Scholar
  5. [5]
    J. Brennan, Invariant subspaces and weighted polynomial approximation, Ark. Mat. 11(1973), 167–189.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    J. Brennan, Approximation in the mean by polynomials on non-Carathéodory domains, Ark. Mat. 15(1977), 117–168.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    J. Brennan, The integrability of the derivative in conformal mapping, J. London Math. Soc. 18(1978), 261–272.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    J. Brennan, Point evaluations, invariant subspaces and approximation in the mean by polynomials, J. Funational Analysis (to appear).Google Scholar
  9. [9]
    J. Brennan, Invariant subspaces and subnormal operators, Proc. Symp. Pure Math. (to appear).Google Scholar
  10. [10]
    T. Carleman, Über die Approximation ana1ytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen, Ark. Mat. Astr. Fys. 17(1923), 1–30.Google Scholar
  11. [11]
    L. Carleson, Mergeljan’s theorem on uniform polynomial approximation, Math. Scand. 15(1965), 167–175.MathSciNetGoogle Scholar
  12. [12]
    E.M. Dyn’kin, Functions with a given estimate for ∂f/∂z̄ and N. Levinson’s theorem, Math. USSR Sbornik. 18(1972), 181–189; Mat. Sb. 89(1972), 182-190.CrossRefGoogle Scholar
  13. [13]
    M.J. Džrbašjan, Metric theorems on completeness and the representability on analytic functions, Thesis, Erevan (1948).Google Scholar
  14. [14]
    O.J. Farrell, On approximation to an analytic function by polynomials, Bull. Amer. Math. Soc. 40(1934), 908–914.CrossRefMathSciNetGoogle Scholar
  15. [15]
    V.P. Havin, Approximation in the mean by analytic functions, Soviet Math Dokl. 9(1968), 245–248 Dokl. Akad. Nauk SSSR 178(1968), 1025-1028.Google Scholar
  16. [16]
    V.P. Havin, Approximation in the mean by polynomials on certain non-Carathéodory domains, I & II, Izv. Vyss Ucebn. Zaved. Mat. 76(1968), 86–93 & 77(1968), 87–94.MathSciNetGoogle Scholar
  17. [17]
    V.P. Havin and V.G. Maz’ja, Approximation in the mean by analytic functions, Vestnik Leningrad Univ. 13(1968), 64–74.Google Scholar
  18. [18]
    V.P. Havin and V.G. Maz’ja, Applications of (p, ℓ)-capacity to some problems in the theory of exceptional sets, Math. USSR Sbornik. 19(1973), 547–580; Mat. Sb. 90(1973), 558-591.Google Scholar
  19. [19]
    L.I. Hedberg, Weighted mean approximation in Carathéodory regions, Math. Scand. 23(1968), 113–122.zbMATHMathSciNetGoogle Scholar
  20. [20]
    L.I. Hedberg, Approximation in the mean by analytic functions, Trans. Amer. Math. Soc. 163(1972), 157–171.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    L.I. Hedberg, Non-linear potentials and approximation in the mean by analytic functions, Math. Z. 129(1972), 299–319.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    M.V. Keldyš, Sur l’approximation en moyenne quadratique des fonctions analytiques, Mat. Sb. 47(1939), 391–401.Google Scholar
  23. [23]
    M.V. Keldyš, Sur l’approximation en moyenne par polynômes des fonctions d’une variable complexe, Mat. Sb. 58(1945), 1–20.Google Scholar
  24. [24]
    A.I. Markušević, Conformal mappings of regions with variable boundaries and applications to the approximation of analytic functions by polynomials, Thesis, Moscow (1934).Google Scholar
  25. [25]
    M.S. Melnikov and S.O. Sinanjan, Questions in the theory of approximation of functions of one complex variable, in Contemporary Problems of Mathematics, vol.4, Itogi Nauki i Tekhniki, VINITI, Moscow, (1975), 143–250; English translation, J. Soviet Math. 5(1976), 688-752.MathSciNetGoogle Scholar
  26. [26]
    S.N. Mergeljan, On the completeness of systems of analytic functions, Amer. Math. Soc. Translations. 19(1962), 109–166; Uspehi Mat. Nauk 8(1953), 3-63.MathSciNetGoogle Scholar
  27. [27]
    S.N. Mergeljan, General metric criteria for the completeness of systerns of polynomials, Dokl. Akad. Nauk. SSSR. 105(1955), 901–904.zbMATHMathSciNetGoogle Scholar
  28. [28]
    S.N. Mergeljan and A.P. Tamadjan, On completeness in a class of non-Jordan regions. Amer. Math. Soc. Translations. 35(1964), 79–94; Izv. Akad. Nauk. Armjan. SSR 7(1954), 1-17.Google Scholar
  29. [29]
    A.L. Šaginjan, On a criterion for incompleteness of a system of analytic functions, Dokl. Akad. Nauk. Armjan SSR. 5(1946), 97–100.Google Scholar
  30. [30]
    A.L. Šaginjan, A problem in the theory of approximation in the complex domain, Sibirsk Mat. Z. 1(1960), 523–543.MathSciNetGoogle Scholar
  31. [31]
    H.S. Shapiro, Weighted polynomial approximation and boundary behavior of analytic functions, in Contemporay Problems in the Theory of Analytia Funations, Nauka, Moscow (1966), 326–335.Google Scholar
  32. [32]
    H.S. Shapiro, Some remarks on weighted polynomial approximations of holomorphic functions, Math. USSR Sbornik 2(1967), 285–293; Mat. Sb. 73(1967), 320-330.CrossRefGoogle Scholar
  33. [33]
    S.O. Sinanjan, Approximation by polynomials and analytic functions in the areal mean, Amer. Math. Soc. Translations. 74(1968), 91–124; Mat. Sb. 69(1966), 546-578.Google Scholar
  34. [34]
    S.O. Sinanjan, Approximation by polynomials in the mean with respect to area, Math. USSR Sbornik. 11(1970), 411–421; Mat. Sb. 82(1970), 444-455.CrossRefGoogle Scholar
  35. [35]
    S.O. Sinanjan, On the completeness of the polynomials in the space LP, Mat. Zametki. 24(1978), 73–83.MathSciNetGoogle Scholar
  36. [36]
    A.P. Tamadjan, A theorem of M.V. Ke1dys, Izv. Akad. Nauk. Apmjan. SSR. 6(1953), 5–11.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • James E. Brennan
    • 1
  1. 1.Department of MathematicsUniversity of KentuckyKentuckyUSA

Personalised recommendations