Advertisement

Uniform Approximation on Smooth Polynomially Convex Sets

  • Barnet M. Weinstock
Part of the Progress in Mathematics book series (PM, volume 4)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [l]
    J. E. Fornaess, Uniform approximation on manifolds, Math. Scand. 31 (1972) 166–170.zbMATHMathSciNetGoogle Scholar
  2. [2]
    M. Freeman. Somme conditions for uniform approximation on a manifold. Function Algebras, Scott, Foresman, Glenview, Ill. (1965).Google Scholar
  3. [3]
    M. Freeman, Uniform approximation on a real-analytic manifold, Trans. Amer. Math. Soc. 143 (1969), 545–553.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    R. Harvey and R. O. Wells, Jr., Holomorphic approximation and hyperfunction theory on a C1 totally real submanifold of a complex manifold, Math. Ann. 197 (1972), 287–318.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    L. Hormander and J. Wermer, Uniform approximation on compact subsets in ℂn, Math. Scand. 23 (1968), 5–2.MathSciNetGoogle Scholar
  6. [6]
    R. Nirenberg and R. O. Wells, Jr., Approximation theorems on a differentiable submanifold of a complex manifold, Trans. Amer. Math. Soc. 142 (1969), 15–35.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    B. Weinstock, Inhomogeneous Cauchy-Riemann systems with smooth dependence on parameters, Duke Math. J. 40 (1973), 307–312.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    B. Weinstock, A new proof of a theorem of Hörmander and Wermer, Math. Ann. 200 (1976), 59–64.CrossRefMathSciNetGoogle Scholar
  9. [9]
    B. Weinstock, Uniform approximation and the Cauchy-Fantappie integral. Proc. Symp. Pure Math.} 30 (1977), 187–191.CrossRefMathSciNetGoogle Scholar
  10. [10]
    R. O. Wells, Jr., Holomorphic approximation on a real-analytic submanifold of a complex manifold. Proc. Amer. Math. Soc. 17 (1965), 1272–1275.CrossRefGoogle Scholar
  11. [l1]
    J. Wermer, Approximation on a disc. Math. Ann. 155 (1964), 331–333.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    J. Wermer. Polynomially convex discs. Math. Ann., 158 (1965), 6–10.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    J. Wermer. Banach Algebras and Several Complex Variables. Springer-Verlag, New York, 1976.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Barnet M. Weinstock
    • 1
  1. 1.Department of MathematicsUniversity of North CarolinaCharlotteCaroline

Personalised recommendations