On The Area of the Spectrum of an Element of a Uniform Algebra

  • H. Alexander
Part of the Progress in Mathematics book series (PM, volume 4)


In classical function theory, the area of the image of a holomorphic function was usually computed with multiplicity. In [5], Alexander, Taylor and Ullman obtained an estimate for the area, without multiplicity, of the image of a function holomorphic in the unit disc. This had applications to function theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Alexander, Polynomial approximation and hulls of sets of finite linear measure in ℂn, Amer. J. Math. 93(1971), 65–75.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    H. Alexander, A Carleman theorem for curves in ℂn, Math. Saand., à paraître.Google Scholar
  3. [3]
    N.U. Arakelian, Approximation uniforme et asymptotique par des fonctions entières sur les ensembles férmes non bornes (en russe). Dokl. Akad. Nauk SSSR} 157 (1964), 9–11.MathSciNetGoogle Scholar
  4. [4]
    T. Carleman, Sur un théorème de Weirstrass, Ark. för Math. Astr. Fys.} 20(1927), 1–5.Google Scholar
  5. [5]
    W.H.J. Fuchs, Théorie de l’approximation des fonctions d’une variable complexe, Presses de l’Université de Montréal, Montreal, 1968.zbMATHGoogle Scholar
  6. [6]
    M. Keldych et M. Lavrentieff, Sur un problème de M. Carleman, Dokl. Akad. Nauk SSSR.} 23(1938), 746–748.Google Scholar
  7. [7]
    J. Nunemacher, Approximation theory on totally real submanifolds, Math. Ann.} 224 (1976), 129–141.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    J. Nunemacher, Approximation theory on CR-submanifolds, Proc. Symp. Pure Math.} 30 (1977), 181–186.CrossRefMathSciNetGoogle Scholar
  9. [9]
    S. Scheinberg, Uniform approximation by entire functions, J. d’Analyse Math.} 29 (1976), 16–18.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    G. Stolzenberg, Uniform approximation on smooth curves, Acta Math. 115 (1966), 185–198.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    E.L. Stout, The theory of uniform algebras. Bogden and Quigley, Tarrytown-on-Hudson, New York, 1971.zbMATHGoogle Scholar
  12. [12]
    E.L. Stout, Uniform approximation on certain unbounded sets, dans ce livre.Google Scholar
  13. [13]
    J. Wermer, Banach algebras and Several Complex variables. 2nd edition. Springer-Verlag, New York, 1976.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • H. Alexander
    • 1
  1. 1.University of IllinoisChicago CircleChicago

Personalised recommendations