Advertisement

Multiplicative Functions |g|1 and their Convolutions : An Overview

  • P. D. T. A. ELLIOTT
Chapter
Part of the Progress in Mathematics book series (PM, volume 22)

Abstract

In this lecture a multiplicative function g will be defined on the positive integers, assume complex values, and satisfy the relation g(mn) = g(m)g(n) whenever (m,n) = 1. I shall assume that |g(n)| ≤ 1 for all positive n. Overview in the title means that there will be few details, but I will indicate the more important ideas. All the results labelled THEOREM are new, due to myself to appear this year or later.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    H. Delange.-Sur les fonctions arithmétiques multiplicatives de module ≤ 1, Acta Arithmetica XLII (1983), 121–151.MathSciNetGoogle Scholar
  2. [2]
    P.D.T.A. Elliott.-On connections between the Turán-Kubilius inequality and the Large Sieve: Some applications, Amer. Math. Soc. Proceedings of Symposia in Pure Math., Vol. 24, Providence, 1973, 77–82.CrossRefGoogle Scholar
  3. [3]
    P.D.T.A. Elliott.-Probabilistic Number Theory, I: Mean-Value Theorems, II: Central Limit Theorems, Grund. der Math. Wiss. 239–240, Springer-Verlag, New York, Heidelberg, Berlin, 1979.Google Scholar
  4. [3a]
    P.D.T.A. Elliott.-Probabilistic Number Theory, I: Mean-Value Theorems, II: Central Limit Theorems, Grund. der Math. Wiss. 239–240, Springer-Verlag, New York, Heidelberg, Berlin, 1980.Google Scholar
  5. [4]
    P.D.T.A. Elliott.-A new inequality in the theory of additive arithmetic functions, Journées Arithmétiques (S.M.F.) Colloque Hubert Delange, 7 et 8 juin 1982, Publications Mathématiques d’Orsay, Univ. de Paris-Sud.Google Scholar
  6. [5]
    P.D.T.A. Elliott.-Arithmetic Functions and Integer Product, Grund der Math. Wiss 272, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1984).Google Scholar
  7. [5a]
    P.D.T.A. Elliott.-Arithmetic Functions and Integer Product, Grund der Math. Wiss 272, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1985).Google Scholar
  8. [6]
    P.D.T.A. Elliott.-Multiplicative functions on arithmetic progressions, Mathematika 34 (1987), 199–206.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [7]
    P.D.T.A. Elliott.-Multiplicative functions on arithmetic progressions, II, Mathematika 35 (1988), 38–50.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [8]
    G. Halász.-Uber die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Acad. Sci. Hung. 19 (1968), 365–403.CrossRefzbMATHGoogle Scholar
  11. [9]
    A. Hildebrand.-Multiplicative functions in short intervals, Canadian J. Math. 39 (1987), 646–672.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [10]
    A. Hildebrand.-An Erdös-Wintner theorem for differences of additive functions, Preprint, August 26, 1987.Google Scholar
  13. [11]
    E. Wirsing.-Das asymptotische Verhalten von Summen über multiplikative Funktionen, II, Acta Math. Acad. Sci. Hung. 18 (1967), 411–467.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • P. D. T. A. ELLIOTT
    • 1
  1. 1.Department of MathematicsUniversity of ColoradoBoulderUSA

Personalised recommendations