Advertisement

p-Adic Heights on Abelian Varieties

  • Yuri G. Zarhin
Part of the Progress in Mathematics book series (PM, volume 22)

Abstract

It has recently become clear that the construction of a p-adic height on an Abelian variety A eventually reduces to a splitting of the Hodge filtration of its de Rham cohomology. The present paper provides a natural description of this connection, based on the study of the universal vectorial extension of A , and of rigidified extensions of algebraic groups. Following a request of the editor, a detailed introduction to these topics has been included, in order to make the text as self-contained as possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    N. Bourbaki.-Groupes et algèbres de Lie, Chapitre 3, Hermann, Paris, 1972.zbMATHGoogle Scholar
  2. [2]
    R. Coleman and B. Gross.-p-adic heights on curves, Preprint, MSRI, Berkeley, August, 1987.Google Scholar
  3. [3]
    S. Lang.-Fundamentals of diophantine geometry, Springer-Verlag, 1983.Google Scholar
  4. [4]
    Yu.I. Manin.-The refined structure of the Néron-Tate height, Math. Sbornik 83 (1970), 332–248 (Math. USSR Sbornik 12 (1971 ), 325-342).MathSciNetGoogle Scholar
  5. [5]
    B. Mazur and J. Tate.-Canonical height pairings via biextensions, Arithmetic and Geometry (vol. 1), Progress in Mathematics (Birkhäuser) 35 (1983), 195–238.MathSciNetGoogle Scholar
  6. [6]
    W. Messing.-The universal extension of an abelian variety by a vector group. Symposia Mathematica 11 (1973), 359–372.MathSciNetGoogle Scholar
  7. [7]
    A. Néron.-Hauteurs et fonctions théta, Rend. Sci. Mat. Milano 46 (1976), 111–135.CrossRefzbMATHGoogle Scholar
  8. [8]
    B. Perrin-Riou.-Hauteurs p-adiques, Séminaire de théorie des nombres, Paris 1982-83, Progress in Mathematics (Birkhäuser) 51 (1984), 233–257.Google Scholar
  9. [9]
    P. Schneider.-p-adic height pairings, I, II, Invent. Math. 69 (1982), 401–409; 79 (1985), 329–374.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    J.-P. Serre.-Groupes algébriques et corps de classes, Hermann, Paris, 1958.Google Scholar
  11. [11]
    Yu.G. Zarhin.-Néron pairing and quasicharacters, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 497–509 (Math. USSR lzvestija, 6 (1972), 491-503).MathSciNetGoogle Scholar
  12. [12]
    N. Katz (with an appendix by L. Illusie).-Internal reconstruction of the unit root F-crystal via expansion coefficients, Annales Sci. ENS (4), 18 (1985), 245–268 (269-285).Google Scholar
  13. [13]
    H. Imai.-On the p-adic heights of some abelian varieties, Proc. Amer. Math. Soc. 100 (1987), 1–7.zbMATHMathSciNetGoogle Scholar
  14. [14]
    M. Rosenlicht.-Extensions of vector groups by Abelian varieties, Amer. J. of Math. 80 (1958), 685–714.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    J. Oesterlé.-Constructions de hauteurs archimédiennes et p-adiques suivant la méthode de Bloch, Séminaire de Théorie des Nombres, Paris 1980-81, Birkhäuser Prog. Math., 22, 1982, 175–192.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Yuri G. Zarhin
    • 1
  1. 1.Research Computing CenterThe USSR Academy of SciencesPushchino Moscow RegionUSSR

Personalised recommendations