Advertisement

Valeurs des Formes Quadratiques Indéfinies Irrationnelles

  • J.-C. Sikorav
Chapter
Part of the Progress in Mathematics book series (PM, volume 22)

Résumé

Nons allons exposer la preuve du résultat suivant, obtenue par G.A. Margulis en 1987 ([6], [7], [8]).

(d’après G.A. Margulis)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    A. Borel.-Density properties of certain subgroups of semisimple groups, Annals of Math. 72 (1960), 179–188.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    A. Borel et G. Prasad.-Valeurs de formes quadratiques aux points entiers, C.R.A.S. Paris, t. 307, Serie I (1988), 217–220.Google Scholar
  3. [3]
    G. Dani.-Orbits of horospherical flows, Duke Math. J. 53 (1986), 178–188.CrossRefMathSciNetGoogle Scholar
  4. [4]
    G. Dani et G.A. Margulis.-Valeurs de formes quadratiques aux points entiers primitifs, note aux C.R.A.S., (a paraitre).Google Scholar
  5. [5]
    H. Davenport.-Collected Works, Acad. Press, London 1977, vol. III, 1004–1117.Google Scholar
  6. [6]
    G.A. Margulis.-Formes quadratiques indéfinies et flots unipotents sur les espaces homogènes, C.R.A.S. Paris, t. 304, Serie I (1987), 249–252.zbMATHMathSciNetGoogle Scholar
  7. [7]
    G.A. Margulis.-Indefinite quadratic forms and unipotent flows on homogeneous spaces, Semester on Dynamical Systems and Ergodic Theory, Banach Center Publ., Varsovie 1986 (a paraitre).Google Scholar
  8. [8]
    G.A. Margulis.-Lie groups and ergodic theory, in Algebra: Some Current Trends, Varna 1986, Springer Lect. Notes 1352 (1988), 130–146.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J.-C. Sikorav
    • 1
  1. 1.UA 41169 Topologie MathématiqueUniversité Paris-SudOrsay cedex 05France

Personalised recommendations