Advertisement

Some New Hasse Principles for Conic Bundle Surfaces

  • P. Salberger
Chapter
Part of the Progress in Mathematics book series (PM, volume 22)

Abstract

Let k be a number field and let X be a smooth projective geometrically integral variety defined over k. If K is an overfield of k, denote by X(K) the set of K-points on X.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [Co]
    J.-L. Colliot-Thélène.-Quelques propriétés arithmétiques des surfaces rationnelles (d'après Manin), Séminaire de Théorie des Nombres, Bordeaux 1972-72, Exp. 13, Lab. Théorie des Nombres, C.N.R.S., Talence 1972.Google Scholar
  2. [CC]
    J.-L. Colliot-Thélène, D. Coray.-L’équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques, Compositio Math. 39 (1979), 301–332.zbMATHMathSciNetGoogle Scholar
  3. [CCS]
    J.-L. Colliot-Thèléne, D. Coray, J.-J. Sansuc.-Descente et principe de Hasse pour certaines variétés rationnelles, J. reine angew. Math., 320 (1980), 150–191.zbMATHMathSciNetGoogle Scholar
  4. [CKS]
    J.-L. Colliot-Thélène, D. Kanevsky, J.-J. Sansuc.-Arithmétique des surfaces cubiques diagonales, in Diophantine Approximation and Transcendence Theory, G. Wüstholz ed., Springer Lecture Notes in Mathematics 1290 (1987), 1–108.Google Scholar
  5. [CS1]
    J.-L. Colliot-Thélène, J.-J. Sansuc.-On the Chow group of certain rational surfaces: a sequel to a paper of S. Bloch, Duke Math. J. 48 (1981), 421–447.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [CS2]
    J.-L. Colliot-Thélène, J.-J. Sansuc.-La descente sur les surfaces rationnelles fibrées en coniques, C.R. Acad. Sci. Paris 303, Série I 1986, 303–306.zbMATHGoogle Scholar
  7. [CS3]
    J.-L. Colliot-Thélène, J.-J. Sansuc.-La descente sur les variétés rationnelles, II, Duke Math. J. 54 (1987), 375–492.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [CSS]
    J.-L. Colliot-Thélène, J.-J. Sansuc, Sir Peter Swinnerton-Dyer.Intersections of two quadrics and Châtelet surfaces, J. reine angew. Math. 373 (1987), 37–107 et 374 (1987), 72-168.zbMATHMathSciNetGoogle Scholar
  9. [Is]
    V.A. Iskovskih.-Minimal models of rational surfaces over arbitrary fields, Izv. Ak. Nauk. SSSR Ser. Mat. 43 (1979), 19–43 (engl. transl.: Math. USSR-Izv. 14 (1980), 17-39).MathSciNetGoogle Scholar
  10. [La]
    S. Lang.-Algebraic number theory, Addison-Wesley, Reading 1970.zbMATHGoogle Scholar
  11. [Ma1]
    Yu.I. Manin.-Rational surfaces over perfect fields (Russian), Inst. des Hautes Etudes Sci., Publ. Math. 30 (1966), 55–113 (engl. transl.: Translations AMS (2) 84 (1969) 137-186).CrossRefzbMATHMathSciNetGoogle Scholar
  12. [Ma2]
    Yu.I. Manin.-Le groupe de Brauer-Grothendieck en géométrie diophantienne, in Actes du congrès intern. math. Nice 1 (1970), 401–411, Gauthier-Villars, Paris 1971.Google Scholar
  13. [MT]
    Yu.I. Manin, M.A. Tsfasman.-Rational varieties: Algebra, geometry and arithmetic, Uspekhi Mat. Nauk 41 (1986), 43–94 (engl. transl.:Russian Math. Surveys 41 (1986), 51-116).Google Scholar
  14. [Sai]
    S. Saito.-Some obseTiJations on motivic cohomologies of arithmetical schemes, preprint.Google Scholar
  15. [Sal1]
    P. Salberger.-K-theory of orders and their Brauer-Severi schemes, Thesis, Department of Mathematics, University of Göteborg 1985.Google Scholar
  16. [Sal2).
    P. Salberger.-Sur l’arithmUique de certaines surfaces de del Pezzo, C.R. Acad. Sci. Paris 303, série I (1986), 273–276.zbMATHMathSciNetGoogle Scholar
  17. [Sal3]
    P. Salberger.-On the arithmetic of conic bundle surfaces, in Séminaire de Théorie des Nombres Paris 1985-86, Progr. Math. 71, Birkhäuser, Basel Boston 1987, 175–197 (cf. also the Errata in this volume).CrossRefGoogle Scholar
  18. [Sal4]
    P. Salberger.-Zero-cycles on rational surfaces over number fields, Invent. Math. 91 (1988), 505–524.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [San1]
    J.-J. Sansuc.-Descente et principe de Hasse pour certaines variétés rationnelles, in Séminaire de Théorie des Nombres, Paris 1980-81, Progr. Math. 22, Birkhäuser, Basel Boston 1982, 253–271.Google Scholar
  20. [San2]
    J.-J. Sansuc.-A propos d’une conjecture arithmétique sur le groupe de Chow d'une surface rationnelle, Séminaire de Théorie des Nombres, Bordeaux 1981-81, Exp. 33 Lab. Théorie des Nombres, C.N.R.S., Talence 1972.Google Scholar
  21. [Sc]
    W.M. Schmidt.-The density of integer points on homogeneous varieties, Acta Math. 154 (1985), 243–296.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [Se]
    J.-P. Serre.-Corps locaux, deuxième éd., Herman, Paris 1968.Google Scholar
  23. [Si]
    J. Silverman.-The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106, Springer-Verlag, Berlin Heidelberg New York 1986.Google Scholar
  24. [Sp]
    T.A. Springer.-Sur les formes quadratiques d’indice zero, C.R. Acad. Sci.C.R. Acad. Sci. 234, 1517–1519 (1952).zbMATHMathSciNetGoogle Scholar
  25. [Sw]
    H.P.F. Swinnerton-Dyer.-Rational points on del Pezza surfaces of degree 5, in Algebraic geometry Oslo 1970 (Proc. 5th Nordic Summer School in Math.), Wolters and Noordhoff, Groningen 1972, 287–290.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • P. Salberger
    • 1
  1. 1.C.N.R.S. Mathématiques URA D0752Université de Paris-SudOrsay CedexFrance

Personalised recommendations