Raising the Levels of Modular Representations

  • Kenneth A. Ribet
Part of the Progress in Mathematics book series (PM, volume 22)


Let l be a prime number, and let F be an algebraic closure of the prime field F l .


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.O.L. Atkin and J. Lehner.-Heeke operators on Γ 0(m), Math. Ann. 185, (1970), 134–160.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    H. Carayol.-Sur les représentations Galoisiennes modulo l attachées aux formes modulaires, Preprint.Google Scholar
  3. [3]
    P. Deligne and J.-P. Serre.-Formes modulaires de poids 1, Ann. Sci. Ec. Norm. Sup. 7, 507–530 (1974).zbMATHMathSciNetGoogle Scholar
  4. [4]
    F.I. Diamond.-Congruence primes for cusp forms of weight k≥2, to appear.Google Scholar
  5. [5]
    B. Mazur.-Modular curves and the Eisenstein ideal, Publ. Math. IHES 47, (1977), 33–186.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    K. Ribet.-Congruence relations between modular forms, Proc. International Congress of Mathematicians 1983, 503–514.Google Scholar
  7. [7]
    K. Ribet.-On modular representations of Gal(̄ℚ/ℚ) arising from modular forms}, Preprint.Google Scholar
  8. [8]
    K. Ribet.-On the component groups and the Shimura subgroup of J 0(N), Séminaire de Théorie des Nombres, Université de Bordeaux, 1987/88.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Kenneth A. Ribet
    • 1
  1. 1.Mathematics DepartmentUniversity of CaliforniaBerkeleyUSA

Personalised recommendations