Advertisement

Comportement Statistique du Nombre de Facteurs Premiers des Entiers

  • Michel Balazard
Chapter
Part of the Progress in Mathematics book series (PM, volume 22)

Résumé

Si n est un entier positif, on note Ω(n) le nombre de facteurs premiers de n, comptés avec leurs multiplicités.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    R. Balasubramanian et K. Ramachandra.-On the number of integers n such that nd(n) ≤ x, Acta Arith. 49 (1988), 313–322.MathSciNetGoogle Scholar
  2. [2]
    M. Balazard.-Sur la répartition des valeurs de certaines fonctions arithmétiques additives, Thèse (Université de Limoges 1987).Google Scholar
  3. [3]
    M. Balazard.-Remarques sur un théorème de G. Halasz et A. Sarközy, Prépublication.Google Scholar
  4. [4]
    M. Balazard, H. Delange et J.-L. Nicolas.-Sur le nombre de facteurs premiers des entiers, C.R.A.S. 306 série I (1988), 511–514.zbMATHGoogle Scholar
  5. [5]
    P. Erdös.-On the integers having exactly k prime factors, Ann. of Math. 49 (1948), 53–66.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    P. Erdös et A. Sárközy.-On the number of prime factors of integers, Acta Sci. Math. 42 (1980), 237–246.Google Scholar
  7. [7]
    R.R. Hall et G. Tenenbaum.-Divisors, Cambridge University Press, 1988.Google Scholar
  8. [8]
    G.H. Hardy et S. Ramanujan.-The normal number of prime factors of an integer, Quarterly J. Math. 48 (1917), 76–92.Google Scholar
  9. [9]
    D. Hensley.-The distribution of round numbers, Proc. London Math. Soc. 54 (1987), 412–444.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    A. Hildebrand et G. Tenenbaum.-On the number of prime factors of an integer, Duke Math. J. 56 (1988), 471–501.CrossRefMathSciNetGoogle Scholar
  11. [11]
    E. Landau.-Sur quelques problémes relatif s á la distribution des nombres premiers, Bull. Soc. Math. France 28 (1900), 25–38.zbMATHMathSciNetGoogle Scholar
  12. [12]
    P. Medgyessy.-On the unimodality of discrete distributions, Period. Math. Hung. 2 (1972) 245–257.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    J.-L. Nicolas.-Sur la distribution des entiers ayant une quantité fixée de facteurs premiers, Acta Arith. 44 (1984), 191–200.zbMATHMathSciNetGoogle Scholar
  14. [14]
    K.K. Norton.-On the number of restricted prime factors of an integers III, L’Ens. Math. 28 (1982) 31–52.zbMATHMathSciNetGoogle Scholar
  15. [15]
    K.K. Norton.-Estimates for partial sums of the exponential series, J. of Math. An. and Ap. 63 (1978), 265–296.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    A.M. Odlyzko and L.B. Richmond.-On the unimodality of high convolutions of discrete distributions, Annals of Prob. 13 (1985), 299–306.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    A.M. Odlyzko and L.B. Richmond.-On the unimodality of some partition polynomials, Europ. J. Comb. 3 (1982), 69–84.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    A.M. Odlyzko and L.B. Richmond.-On the compositions of an integer, in: Combinatorial Mathematics VII, Springer Lecture Notes 829.Google Scholar
  19. [19]
    A. Selberg.-Note on a paper by L.G. Sathe, J. Indian Math. Soc. 18 (1954), 83–87.zbMATHMathSciNetGoogle Scholar
  20. [20]
    G. Tenenbaum.-La méthode du col en th–orie analytique des nombres, Sém. Théorie des Nombres de Paris (1986–87), Birkhaüser (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Michel Balazard
    • 1
  1. 1.Département de MathématiquesFaculté des SciencesLimoges CedexFrance

Personalised recommendations