Advertisement

Terminology of Gonadal Anomalies in Fish and Amphibians Resulting from Chemical Exposures

  • Markus Hecker
  • Margaret B. Murphy
  • Katherine K. Coady
  • Daniel L. Villeneuve
  • Paul D. Jones
  • James A. Carr
  • Keith R. Solomon
  • Ernest E. Smith
  • Glen Van Der Kraak
  • Timothy Gross
  • Louis Du Preez
  • Ronald J. Kendall
  • John P. Giesy
Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 187)

Abstract

During the past decade, the scientific community and the public have become increasingly aware that some chemicals have the potential to interfere with endocrine systems in both vertebrate and invertebrate wildlife species (WHO 2002; Ankley et al. 1998). One aspect of these effects has been the observation of gonadal abnormalities in fish, amphibians, reptiles, birds, and mammals, including humans (Kavlock et al. 1996). To date, most research in this field has focused on demasculinization or feminization effects on male animals (Sumpter et al. 1996; Gimeno et al. 1998a,b; Crain et al. 1999; Jobling et al. 1998; Kloas et al. 1999; Hayes et al. 2002). Evidence for this estrogenic or antiandrogenic type of “endocrine disruption” has come largely from studies of teleost fish, either in controlled laboratory experiments where they have been exposed to specific chemicals or in the wild where organisms have been exposed to mixtures of compounds (Jobling et al. 1998; Harries et al. 1999; Minier et al. 2000; Hecker et al. 2002; Matthiessen et al. 2002). More recently, attention has shifted toward other groups of animals living in or closely associated with aquatic environments, such as alligators (Crain et al. 1999) and amphibians (Kloas et al. 1999; Hayes et al. 2002; Hecker et al. 2004).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen Y, Matthiessen P, Scott AP, Haworth S, Feist S, Thain JE (1999) The extent of oestrogenic contamination in the UK estuarine and marine environments: further surveys of flounder. Sci Total Environ 233:5–20.PubMedGoogle Scholar
  2. Ankley G, Mihaich E, Stahl R, Tillitt D, Colborn T, McMaster S, Miller R, Bantle J, Campbell P, Denslow N, Dickerson R, Folmar L, Fry M, Giesy JP, Gray LE, Guiney P, Hutchinson T, Kennedy S, Kramer V, LeBlanc G, Mayes M, Nimrod A, Patino R, Peterson R, Purdy R, Ringer R, Thomas P, Touart L, Van Der Kraak G, Zachrewski T (1998) Overview of a workshop on screening methods for detecting potential (anti-) estrogenic/androgenic chemicals in wildlife. Environ Toxicol Chem 17:68–87.Google Scholar
  3. Blazer VS (2002) Histopathological assessment of gonadal tissue in wild fishes. Fish Physiol Biochem 26:85–101.Google Scholar
  4. Bögi C, Schwaiger J, Ferling H, Mallow U, Steineck C, Sinowatz F, Kalbfus W, Negele RD, Lutz I, Kloas W (2003) Endocrine effects of environmental pollution on Xenopus laevis and Rana temporaria. Environ Res 93:195–201PubMedGoogle Scholar
  5. Carr JA, Gentles A, Smith EE, Goleman WL, Urquidi LJ, Thuett K, Kendall RJ, Giesy JP, Gross TS, Solomon KR, Van Der Kraak G (2003) Response of larval Xenopus laevis to atrazine-assessment of gonadal and laryngeal morphology. Environ Toxicol Chem 22:396–405.PubMedGoogle Scholar
  6. Chang CY, Witschi E (1956) Genic control and hormonal reversal of sex differentiation in Xenopus. Proc Soc Exp Biol Med 93:140–144.PubMedGoogle Scholar
  7. Cheng T-H (1929) Intersexuality in Rana cantabrigensis. J Morphol Physiol 48:354–369.Google Scholar
  8. Christensen K (1929) Hermaphroditism in Rana pipiens. Anat Rec 43:345–358.Google Scholar
  9. Clemens WA (1921) A case of complete hermaphroditism in a bullfrog (Rana catesbeiana). Anat Rec 22:179–181.Google Scholar
  10. Coady KK, Murphy MB, Villeneuve DL, Hecker M, Jones PD, Carr JA, Solomon KR, Smith EE, Van Der Kraak G, Kendall RJ, Giesy JP (2004) Effects of atrazine on metamorphosis, growth, and gonadal development in the green frog (Ranaclamitans). J Toxicol Environ Health A 67:941–957.PubMedGoogle Scholar
  11. Coady KK, Murphy MB, Villeneuve DL, Hecker M, Carr JA, Solomon KR, Smith EE, Van Der Kraak G, Kendall RJ, Giesy JP (2005) Effects of atrazine on metamorphosis, growth, and gonadal and laryngeal development in Xenopus laevis. Ecotoxicol Environ Saf 62: doi:10.1016/j.ecoenv.2004.10.010.PubMedGoogle Scholar
  12. Cody RP, Bortone SA (1997) Maculinization of mosquitofish as an indicator of exposure to kraft mill effluent. Bull Environ Contam Toxicol 58:429–436.PubMedGoogle Scholar
  13. Crew FAE (1921) Sex-reversal in frogs and toads. A review of the recorded cases of abnormality of the reproductive system and an account of a breeding experiment. J Genet 11:141–181.Google Scholar
  14. Crain DA, Spiteri ID, Guillette LJ Jr (1999) The functional and structural observations of the neonatal reproductive system of alligators exposed in ovo to atrazine, 2,4-D, or estradiol. Toxicol Ind Health 15:180–185.PubMedGoogle Scholar
  15. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364.Google Scholar
  16. Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol 136:153–179.PubMedGoogle Scholar
  17. Du Preez LH, Jansen van Rensburg PJ, Joostea AM, Carr JA, Giesy JP, Gross TS, Kendall RJ, Smith EE, Van Der Kraak G, Solomon KR (2005) Seasonal exposures to triazine and other pesticides in surface waters in the western Highveld corn-production region in South Africa. Environ Pollut 135:131–141.PubMedGoogle Scholar
  18. Eggert B (1929) Der Hermaphroditismus der Tiere. 1. Beitrag zur Intersexualitaet der der Anuren. Zeit Wissen Zool 133:562–585.Google Scholar
  19. Evans TC (1931) Sex reversal in Rana pipiens. Anat Rec 48:47–53.Google Scholar
  20. Foote CL, Witschi E (1939) Effect of sex hormones on the gonads of frog larvae (Rana clamitans): Sex inversion in females; stability in males. Anat Rec 75:7583.Google Scholar
  21. Gallien L (1974) Intersexuality. In: Loft B (ed) Physiology of the Amphibia, vol 2. Academic Press, New York, pp 523–549.Google Scholar
  22. Gamapurohit NP, Shanbhag BA, Saidapur SK (2000) Pattern of gonadal sex differentiation, development, and onset of steroidogenesis in the frog, Rana curtipes. Gen Comp Endocrinol 119:256–264.Google Scholar
  23. Getsfrid W, Thiyagarajah A, Hartley WR (2004) Ovotestis in a Japanese medaka. J Aquat Anim Health 16:164–168.Google Scholar
  24. Gimeno S, Komen H, Gerritsen AGM, Bowmer T (1998a) Feminization of young males of the common carp, Cyprinus carpio, exposed to 4-tert-pentylphenol during sexual differentiation. Aquat Toxicol 43:77–92.Google Scholar
  25. Gimeno S, Komen H, Jobling S, Sumpter J, Bowmer T (1998b) Demasculinization of sexually mature male common carp, Cyprinus carpio,exposed to 4-tertpentylphenol during spermatogenesis. Aquat Toxicol 43:93–109.Google Scholar
  26. Harries JE, Janbakshs A, Jobling S, Matthiessen P, Sumpter JP, Tyler CR (1999) Estrogenic potency of effluent from two sewage treatment works in the United Kingdom. Environ Toxicol Chem 18:932–937.Google Scholar
  27. Hayes TB (2004) There is no denying this: defusing the confusion about atrazine. BioScience 54:1138–1149.Google Scholar
  28. Hayes TB, Collins A, Lee M, Mendoza M, Noriega N, Stuart AA, Vonk A (2002) Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci USA 99:5476–5480.PubMedGoogle Scholar
  29. Hayes TB, Haston K, Tsui M, Hoang A, Haeffele C, Vonk A (2003) Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipens): laboratory and field evidence. Environ Health Perspect 111:568–575.PubMedPubMedCentralGoogle Scholar
  30. Hecker M, Tyler CR, Hoffmann M, Maddix S, Karbe L (2002) Plasma biomarkers in fish provide evidence for endocrine modulation in the Elbe River, Germany. Environ Sci Technol 36:2311–2321.PubMedGoogle Scholar
  31. Hecker M, Coady KK, Villeneuve DL, Murphy MB, Jones PD, Giesy JP (2003) Response of Xenopus Laevis to atrazine exposure: Assessment of the mechanism of action of atrazine MSU-04. ECORISK, Greensboro, NC, USA.Google Scholar
  32. Hecker M, Giesy JP, Jones PD, Jooste AM, Carr JA, Solomon KR, Smith EE, Van der Kraak G, Kendall RJ, Du Preez L (2004) Plasma sex steroid concentrations and gonadal aromatise activities in African clawed frogs (Xenopus laevis) from South Africa. Environ Toxicol Chem 23:1996–2007.PubMedGoogle Scholar
  33. Hoffmann M (2005) Sexual differentiation and gonadal development of male and female bream (Abramis brama [L.]) of the Elbe river: Natural variability or evidence of endocrine modulation. Reports of the Center for Marine and Atmospheric Science, Series E. University of Hamburg, Hamburg, Germany.Google Scholar
  34. Hsu CY, Liang HM (1971) Sex races of Rana catesbeiana in Taiwan. Herpetologica 26:214–221.Google Scholar
  35. Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506.Google Scholar
  36. Jooste AM, Du Preez LH, Carr JA, Giesy JP, Gross TS, Kendall RJ, Smith EE, Van Der Kraak GL, Solomon KR (2005) Gonadal responses of Xenopus laevis larvae exposed to atrazine in microcosms. Environ Toxicol Chem 39:5255–5261.Google Scholar
  37. Kang IJ, Yokota H, Oshima Y, Tsuruda Y, Hano T, Maeda M, Imada N, Tadokoro H, Honjo T (2003) Effects of 4-nonylphenol on reproduction of Japanese medaka (Oryzias latipes). Environ Toxicol Chem 22:2438–2445.PubMedGoogle Scholar
  38. Kavlock RT, Daston GP, De Rosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the US EPA sponsored workshop. Environ Health Perspect 104:715–740.PubMedPubMedCentralGoogle Scholar
  39. Kinnberg K, Toft G (2003) Effects of estrogenic and antiandrogenic compounds on the testis structure of the adult guppy (Poecilia reticulate). Ecotoxicol Environ Saf 54:16–24.PubMedGoogle Scholar
  40. Kloas W, Lutz I, Einspanier R (1999) Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. Sci Total Environ 225:59–68.PubMedGoogle Scholar
  41. Laenge R, Hutchinson TH, Croudace CP, Siegmund F, Schweinfurth H, Hampe P, Panter GH, Sumpter JP (2001) Effects of synthetic estrogen 17a-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20:1216–1227.Google Scholar
  42. Lee PA (1969) Histology of the oviduct of the leopard frog, Rana pipiens. Anat Rec 165:493–502.PubMedGoogle Scholar
  43. Leino RL, Jensen KM, Ankley GT (2004) Gonadal histology and characteristic histopathology associated with endocrine disruption in the adult fathead minnow (Pimephales promelas). Environ Toxicol Pharmacol 19:85–98.Google Scholar
  44. Levy G, Lutz I, Krueger A, Kloas W (2004) Bisphenol A induces feminization in Xenopus laevis tadpoles. Environ Res 94:102–111.PubMedGoogle Scholar
  45. Lloyd JH (1929) Hermaphroditism in the common frog (Rana temporaria). Am Nat 63:130–138.Google Scholar
  46. Mac Lean BL (1929) Abnormal reproductive organs in a specimen of Rana pipiens. Anat Rec 43:53–63.Google Scholar
  47. Mackenzie CA, Berril M, Metcalfe C, Pauli PD (2003) Gonadal differentiation in frogs exposed to estrogenic and antiestrogenic compounds. Environ Toxicol Chem 22:2466–2475.PubMedGoogle Scholar
  48. Marshek WI, Kraychy S, Muir RD (1972) Microbial degradation of sterols. Micobiol 23:72–77.Google Scholar
  49. Matthiessen P, Allen Y, Bamber S, Craft J, Hurst M, Hutchinson T, Feist S, Katsiadaki I, Kirby M, Robinson C, Scott S, Thain J, Thomas K (2002) The impact of oestrogenic and androgenic contamination on marine organisms in the United Kingdom: summary of the EDMAR programme. Mar Environ Res 54:645–649.PubMedGoogle Scholar
  50. Mayer LP, Dyer CA, Propper CR (2003) Exposure to 4-tert-octylphenol accelerates sexual differentiation and disrupts expression of steroidogenic factor 1 in developing bullfrogs. Environ Health Perspect 111:557–561.PubMedPubMedCentralGoogle Scholar
  51. Metcalfe TL, Metcalfe CD, Kiparissis Y, Niimi AJ, Foran CM, Benson WH (2000) Gonadal development and endrocrine responses in Japanese medaka (Oryzias latipes) exposed to o,p-DDT in water or through maternal transfer. Environ Toxicol Chem 19:1893–1900.Google Scholar
  52. Metcalfe CD, Metcalfe TL, Kiparissis Y, Koenig BG, Khan C, Hughes RJ, Croley TR, March RE, Potter T (2001) Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ Toxical Chem 20:297–308.Google Scholar
  53. Mikaelian I, de Lafontaine Y, Harshbarger JC, Lee LLJ, Martineau D (2002) Health of lake whitefish (Coregonus clupeaformis) with elevated tissue levels of environmental contaminants. Environ Toxicol Chem 21:532–541.PubMedGoogle Scholar
  54. Miles-Richardson SR, Kramer VJ, Fitzgerald SD, Render JA, Yamini B, Barbee SJ, Giesy JP (1999a) Effects of waterborne exposure to 17 13-estradiol on secondary sex characteristics and gonads of fathead minnows (Pimephales promelas). Aquat Toxicol 47:129–145.Google Scholar
  55. Miles-Richardson SR, Pierens SL, Nichols KM, Kramer VJ, Snyder EM, Snyder SA, Render JA, Fitzgerald SD, Giesy JP (1999b) Effects of waterborne exposure to 4-nonylphenol on secondary sex characteristics and gonads of fathead minnows (Pimephales promelas). Environ Res Sect A 80:S122—S137.Google Scholar
  56. Minier C, Caltot F, Leboulanger F, Hill EM (2000) An investigation of the incidence of intersex fish in Seine-Maritime and Sussex regions. Analysis 28:801–806.Google Scholar
  57. Miyata S, Kubo T (2000) In vitro effects of estradiol and aromatase inhibitor treatment on sex differentiation in Xenopus laevis gonads. Gen Comp Endocrinol 119:105–110.PubMedGoogle Scholar
  58. Miyata S, Koike S, Kubo T (1999) Hormonal reversal and the genetic control of sex differentiation in Xenopus. Zool Sci 16:335–340.Google Scholar
  59. Murphy MB, Hecker M, Coady KK, Tompsett AR, Jones PD, DuPreez LH, Everson GJ, Solomon KR, Carr JA, Smith EE, Kendall RJ, van der Kraak G, Giesy JP (2005) Atrazine concentrations, gonadal gross morphology and histology in ranid frogs collected in Michigan agricultural areas. Aquat Toxicol (in press).Google Scholar
  60. Neal HV (1924) A case of unilateral or true gynandromorphism in a leopard frog. Anat Rec 29:113.Google Scholar
  61. Pancak-Roessler MK, Norris DO (1991) The effects of orchidectomy and gonadotropins on steroidogenesis and oogenesis in Bidder’s organs of the toad Bufo woodhousii. J Exp Zool 260:323–336.PubMedGoogle Scholar
  62. Papoulias DM, Villalobos SA, Meadows J, Noltie DB, Giesy JP, Tillit DE (2003) In ovo exposure to o,p’-DDE affects sexual development but not sexual differentiation in Japanese medaka (Oryzias latipes). Environ Health Perspect 111:29–32.PubMedPubMedCentralGoogle Scholar
  63. Pickford DB, Morris ID (2003) Inhibition of gonadotropin-induced oviposition and ovarian steroidogenesis in the African clawed frog (Xenopus laevis) by the pesticide methoxychlor. Aquat Toxicol 62:79–94.Google Scholar
  64. Pickford DB, Hetheridge MJ, Caunter JE, Hall AT, Hutchinson TH (2003) Assessing chronic toxicity of bisphenol A to larvae of the African clawed frog (Xenopus laevis) in a flow-through exposure system. Chemosphere 53:223–235.PubMedGoogle Scholar
  65. Piferrer F, Donaldson EM (1992) The comparative effectiveness of the natural and a synthetic estrogen for the direct feminization of Chinook salmon (Oncorhynchus tschawytscha). Aquaculture 106:183–193.Google Scholar
  66. Purdom CE, Hardiman PA, Bye VJ, Eno NC, Tyler CR, Sumpter JP (1994) Estrogenic effects of effluents from sewage treatment works. Chem Ecol 8:275–285.Google Scholar
  67. Qin Z-F, Zhou J-M, Chu S-G, Xu X-B (2003) Effects of Chinese domestic polychlorinated biphenyls (PCBs) on gonadal differentiation in Xenopus laevis. Environ Health Perspect 111:553–556.PubMedPubMedCentralGoogle Scholar
  68. Reeder AL, Foley GL, Nichols DK, Hansen LG, Wikoff B, Faeh S, Eisold J, Wheeler MB, Warner R, Murphy JE, Beasley VR (1998) Forms and prevalence of inter-sexuality and effects of environmental contaminants on sexuality in cricket frogs (Acris crepitans). Environ Health Perspect 106:261–266.PubMedPubMedCentralGoogle Scholar
  69. Seki M, Yokota H, Matsubara H, Tsuruda Y, Maeda M, Tadokoro H, Kobayashi K (2002) Effect of ethinylestradiol on the reproduction and induction of vitellogenin and testis-ova in medaka (Oryzias latipes). Environ Toxicol Chem 21:1692–1698.PubMedGoogle Scholar
  70. Skakkebaek NE, Rajpert-De Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 5:972–978.Google Scholar
  71. Smith EE, Du Preez L, Solomon KR (2003) Gonadal and laryngeal responses to field exposure of Xenopus laevis to atrazine in areas of corn production in South Africa. SA-OIC ECORISK, Greensboro, NC, USA.Google Scholar
  72. Smith EE, Du Preez LH, Gentles A, Solomon KR, Tandler B, Carr JA, Van Der Kraak GL, Kendall RJ, Giesy JP, Gross T (2005) Assessment of laryngeal muscle and testicular cell types in Xenopus laevis (Anura Pipidae) inhabiting maize and non-maize growing areas of South Africa. Afr J Herpetol 54:69–76.Google Scholar
  73. Sumner FB (1894) Hermaphroditism in Rana virescens. Anat Anz 9:694–695.Google Scholar
  74. Sumpter JP, Johnson AC (2005) Lessions from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environ Sci Technol 39:4321–4332.PubMedGoogle Scholar
  75. Sumpter JP, Jobling S, Tyler CR (1996) Oestrogenic substances in the aquatic environment and their potential impact on animals, particulary fish. In: Taylor EW (ed) Toxicology of Aquatic Pollution. Cambridge University Press, New York, pp 205–224.Google Scholar
  76. Van Aerle R, Nolan M, Jobling S, Christiansen LB, Sumpter JP, Tyler CR (2001) Sexual disruption in a second species of wild cyprinid fish (the gudgeon, Gobio gobio) in United Kingdom freshwaters. Environ Toxicol Chem 20:2841–2847.PubMedGoogle Scholar
  77. Van Tienhoven A (1983) Reproductive Physiology of Vertebrates, 2nd Ed. Cornell University Press, Ithaca, NY.Google Scholar
  78. Vethaak DA, Lahr J, Kuiper RV, Grinwis GCM, Rouhani Rankouhid T, Giesy JP, Gerritsen A (2002) Estrogenic effects in fish in The Netherlands: some preliminary results. Toxicology 181–182:147–150.PubMedGoogle Scholar
  79. Villalpando I, Merchant-Larios H (1990) Determination of the sensitive stages for gonadal sex-reversal in Xenopus laevis tadpoles. Int J Dev Biol 34:281–285.PubMedPubMedCentralGoogle Scholar
  80. Weber LP, Kiparissis Y, Hwang GS, Niimi AJ, Janz DM, Metcalfe CD (2002) Increased cellular apoptosis after chronic exposure to nonylphenol and quercetin in adult medaka (Oryzias latipes). Comp Biochem Physiol C 131:51–59.Google Scholar
  81. Whitman-Elia JF, Queenan JT (2002) Ovotestis. eMedicine, http://www.emedicine.com/med/topic1702.htm Google Scholar
  82. WHO (2002) Global assessment of the state-of-the-science of endocrine disruptors (Damstra T, Barlow S, Bergman A, Kavlock R, Van Der Kraak G, eds). WHO/ PCS/EDC/02.2.Google Scholar
  83. Witschi E (1921) Development of gonads and transformation of sex in the frog. Am Nat 55:529–538.Google Scholar
  84. Yokota H, Tsuruda Y, Maeda M, Oshima Y, Tadokoro H, Nakazono A, Honjo T, Kobayashi K (2000) Effect of bisphenol A on the early life stage in Japanese medaka (Oryzias latipes). Environ Toxicol Chem 19:1925–1930.Google Scholar

Copyright information

© Springer Science+Business Media New York 2006

Authors and Affiliations

  • Markus Hecker
    • 1
  • Margaret B. Murphy
    • 1
  • Katherine K. Coady
    • 1
  • Daniel L. Villeneuve
    • 2
  • Paul D. Jones
    • 1
  • James A. Carr
    • 3
  • Keith R. Solomon
    • 4
  • Ernest E. Smith
    • 5
  • Glen Van Der Kraak
    • 6
  • Timothy Gross
    • 7
  • Louis Du Preez
    • 8
  • Ronald J. Kendall
    • 5
  • John P. Giesy
    • 1
    • 9
  1. 1.Department of Zoology, National Food Safety and Toxicology Center, Institute for Environmental ToxicologyMichigan State UniversityEast LansingUSA
  2. 2.U.S. EPA Mid-Continent Ecology DivisionDuluthUSA
  3. 3.Department of Biological SciencesTexas Tech UniversityLubbockUSA
  4. 4.Centre for Toxicology and Department of Environmental BiologyUniversity of GuelphGuelphCanada
  5. 5.The Institute of Environmental and Human Health, and Department of Environmental ToxicologyTexas Tech UniversityLubbockUSA
  6. 6.Department of Integrative BiologyUniversity of GuelphCanada
  7. 7.Department of Physiological Sciences, College of Veterinary Medicine, and USGS Florida Caribbean Science CenterEcotoxicology Laboratory, University of FloridaGainesvilleUSA
  8. 8.School of Environmental Sciences and DevelopmentNorth-West UniversityPotchefstroomSouth Africa
  9. 9.Biology and Chemistry DepartmentCity University of Hong KongHong KongChina

Personalised recommendations