Advertisement

Energy Demand Analysis

  • Subhes C. BhattacharyyaEmail author
Chapter

Abstract

This chapter introduces the concept of energy demand using basic micro-economics and presents the three-stage decision-making process of energy demand. It then provides a set of simple indicators (such as price and income elasticities and energy intensity) and discusses the decomposition method and econometric method that can be used to analyse energy demand.

Keywords

Energy demand Demand decisions Elasticities Decomposition analysis 

References

  1. Ang, B. W. (1997). Decomposition of aggregate energy intensity of industry with application to China. Korea and Taiwan. Energy and Environment, 8(1), 1–11.CrossRefGoogle Scholar
  2. Ang, B. W. (2004). Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy, 32(2004), 1131–1139.CrossRefGoogle Scholar
  3. Ang, B. W. (2015). LMDI decomposition approach: A guide for implementation. Energy Policy, 86, 233–238.CrossRefGoogle Scholar
  4. Ang, B. W., & Zhang, F. Q. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25, 1149–1176.CrossRefGoogle Scholar
  5. Beckel, C, Sadamori, L, Staake, T, Santini, S. (2014). Revealing household characteristics from smart meter data. Energy, 78, 397–410.CrossRefGoogle Scholar
  6. Bentzen, J., & Engsted, T. (1993). Short- and long-run elasticities in energy demand: A cointegration approach. Energy Economics, 15(1), 9–16.CrossRefGoogle Scholar
  7. Bentzen, J., & Engsted, T. (2001). A revival of the autoregressive distributed lag model in estimating energy demand relationships. Energy, 26, 45–55.CrossRefGoogle Scholar
  8. Bhattacharyya, S. C. (2006). Renewable energies and the poor: Niche or Nexus. Energy Policy, 34(6), 659–663.CrossRefGoogle Scholar
  9. Bohi, D. (1981). Analyzing demand behaviour: A study of energy elasticities. Baltimore: John Hopkins University Press.Google Scholar
  10. BP Statistical Review of World Energy. (2017). BP plc, London.Google Scholar
  11. Cahill, C. J., & Gallachoir, B. P. O. (2012). Combining physical and economic output data to analyse energy and CO2 emissions trends in industry. Energy Policy, 49, 422–429.CrossRefGoogle Scholar
  12. Chan, H. N., & Lee, S. K. (1997). Modelling and forecasting the demand for coal in China. Energy Economics, 19, 271–287.CrossRefGoogle Scholar
  13. EIA. (2014). Behavioural economics applied to energy demand analysis: A foundation, energy information administration. Washington, DC. Retrieved April 2, 2018 from https://www.eia.gov/analysis/studies/demand/economicbehavior/pdf/behavioraleconomics.pdf.
  14. Engle, R. E., & Granger, C. W. (1987). Cointegration and error-correction: Representation, estimation and testing. Econometrica, 55, 251–276.CrossRefGoogle Scholar
  15. Fisher, F. M., & Kaysen, C. (1962). A study in econometrics: The demand for electricity in the United States. Amsterdam: North-Holland.Google Scholar
  16. Frederiks, E. R., Stenner, K., & Hobman, E. V. (2015). Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour. Renewable and Sustainable Energy Reviews, 41, 1385–1394.CrossRefGoogle Scholar
  17. Hartman, R. S. (1979). Frontiers in energy demand modelling. Annual Review of Energy, 4, 433–466.CrossRefGoogle Scholar
  18. Harvey, A. C. (1997). Trends, cycles and autoregressions. The Economic Journal, 107, 192–201.CrossRefGoogle Scholar
  19. Hasanbeigi, A., Price, L., Aden, N., Chunxia, Z., Xiuping, L., Fangqin, S. (2011). A comparison of iron and steel production energy use and energy intensity in China and the U.S., Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley. Retrieved April 5, 2018 from https://www.osti.gov/servlets/purl/1050727.
  20. Labandeira, X., Labeaga, J. M., & Lopez-Otero, X. (2017). A meta-analysis on the price elasticity of energy demand. Energy Policy, 102, 549–568.CrossRefGoogle Scholar
  21. Medlock, III, K. (2009). Energy demand theory, Chapter 5. In J. Evans & L. C. Hunt (Eds.), International handbook on the economics of energy. Cheltenham, UK: Edward Elgar.Google Scholar
  22. Morrow, III, W. R., Hasanbeigi, A., Sathaye, J., Xu, T. (2013). Assessment of energy efficiency improvement and CO2 emissions reduction potential in India’s iron and steel industry. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley. Retrieved 5 April, 2018 https://ies.lbl.gov/sites/all/files/lbnl-6338e_pdf_0.pdf.
  23. Munasinghe, M., & Meier, P. (1993). Energy policy analysis and modeling. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Pindyck, R. S., & Rubinfeld, D. L. (1998). Econometric models and economic forecasts. Boston: McGrawhill.Google Scholar
  25. Ryan, D. L., & Plourde, A. (2009). Empirical modeling of energy demand, Chapter 6. In J. Evans & L. C. Hunt (Eds.), International handbook on the economics of energy. Cheltenham, UK: Edward Elgar.Google Scholar
  26. Siddayao, C. M. (1986). Energy demand and economic growth, measurement and conceptual issues in policy analysis. London: West View Press.Google Scholar
  27. Smyth, R., & Narayan, P. K. (2015). Applied Econometrics and implications for energy economics research. Energy Economics, 50, 351–358.CrossRefGoogle Scholar
  28. Stevens, P. (2000). An introduction to energy economics. In P. Stevens (Ed.), The economics of energy (Vol. 1). Cheltenham: Edward Elgar. Also reproduced in two parts in the Journal of Energy Literature—Vol. VI, No. 2 December 2000 and Vol. VII, No. 1 June 2001.Google Scholar
  29. Sun, J. W. (1998). Changes in energy consumption and energy intensity: a complete decomposition model. Energy Economics, 20(1), 85–100.CrossRefGoogle Scholar
  30. Wilson, C., & Dowlatabadi, H. (2007). Models of decision making and residential energy use. Annual Review of Environment and Resources, 32, 169–203.CrossRefGoogle Scholar
  31. Worrel, E., Ramesohl, S., & Boyd, G. (2004). Advances in energy forecasting models based on engineering economics. Annual Review of Environment and Resources, 29, 345–381.CrossRefGoogle Scholar
  32. Zhou, K., Fu, C., & Yang, S. (2016). Big data driven smart energy management: from big data to big insights. Renewable and Sustainable Energy Reviews, 56, 215–225.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Energy and Sustainable DevelopmentDe Montfort UniversityLeicesterUK

Personalised recommendations