Advertisement

Pattern Recognition for Biometrics and Bioinformatics

  • Ke-Lin DuEmail author
  • M. N. S. Swamy
Chapter

Abstract

Biometrics and Bioinformatics are among the most important and successful applications of machine learning methods. Biometrics are physical characteristics of a person, and usually used for identification. Bioinformatics is related to extraction of information from an DNA or protein sequence. This chapter gives an introductory account on the two topics.

References

  1. 1.
    Allen, D., & Darwiche, A. (2008). RC\_Link: Genetic linkage analysis using Bayesian networks. International Journal of Approximate Reasoning, 48, 499–525.Google Scholar
  2. 2.
    Bartlett, M. S., Movellan, J. R., & Sejnowski, T. J. (2002). Face recognition by independent component analysis. IEEE Transactions on Neural Networks, 13(6), 1450–1464.Google Scholar
  3. 3.
    Bassoy, C. S., Torgasin, S., Yang, M., & Zimmermann, K.-H. (2010). Accelerating scalar-product based sequence alignment using graphics processor units. Journal of Signal Processing Systems, 61, 117–125.Google Scholar
  4. 4.
    Carmona-Saez, P., Pascual-Marqui, R. D., Tirado, F., Carazo, J. M., & Pascual-Montano, A. (2006). Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinformatics, 7, Article No. 78.Google Scholar
  5. 5.
    Chen, T. (2001). Audiovisual speech processing. IEEE Signal Processing Magazine, 18(1), 9–21.MathSciNetGoogle Scholar
  6. 6.
    Chen, W., Er, M. J., & Wu, S. (2006). Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 36(2), 458–466.Google Scholar
  7. 7.
    Cho, H., & Dhillon, I. S. (2008). Coclustering of human cancer microarrays using minimum sum-squared residue coclustering. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 5(3), 385–400.Google Scholar
  8. 8.
    Das, M. K., & Dai, H. K. (2007). A survey of DNA motif finding algorithms. BMC Bioinformatics, 8, S21.Google Scholar
  9. 9.
    ElBakry, O., Ahmad, M. O., & Swamy, M. N. S. (2012). Identification of differentially-expressed genes for time-course microarray data based on modified RM ANOVA. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9, 451–466.Google Scholar
  10. 10.
    Farzin, H., Abrishami-Moghaddam, H., & Moin, M.-S. (2008). A novel retinal identification system. EURASIP Journal on Advances in Signal Processing, 2008, Article ID 280635, 10 pp.Google Scholar
  11. 11.
    Foresti, G. L., Micheloni, C., Snidaro, L., & Marchiol, C. (2003). Face detection for visual surveillance. In Proceedings of the 12th International Conference on Image Analysis and Processing (pp. 115–120). Mantova, Italy.Google Scholar
  12. 12.
    Fu, Y., Guo, G., & Huang, T. S. (2010). Age synthesis and estimation via faces: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(11), 1955–1976.Google Scholar
  13. 13.
    Georghiades, A. S., Belhumeur, P. N., & Kriegman, D. J. (2001). From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 643–660.Google Scholar
  14. 14.
    He, X., Yan, S., Hu, Y., Niyogi, P., & Zhang, H.-J. (2005). Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3), 328–340.Google Scholar
  15. 15.
    Ionescu, B., Coquin, D., Lambert, P., & Buzuloiu, V. (2005). Dynamic hand gesture recognition using the skeleton of the hand. EURASIP Journal on Advances in Signal Processing, 2005(13), 2101–2109.Google Scholar
  16. 16.
    Jee, H., Lee, K., & Pan, S. (2004). Eye and face detection using SVM. In Proceedings of Intelligent Sensors, Sensor Networks and Information Processing Conference (pp. 577–580). Melbourne, Australia.Google Scholar
  17. 17.
    Koolagudi, S. G., & Krothapalli, R. S. (2011). Two stage emotion recognition based on speaking rate. International Journal of Speech Technology, 14, 35–48.Google Scholar
  18. 18.
    Kumar, A., & Prathyusha, K. V. (2009). Personal authentication using hand vein triangulation and knuckle shape. IEEE Transactions on Image Processing, 18(9), 2127–2136.MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kwon, Y., & Lobo, N. (1999). Age classification from facial images. Computer Vision and Image Understanding, 74(1), 1–21.Google Scholar
  20. 20.
    Le Cun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.Google Scholar
  21. 21.
    Liu, C., & Wechsler, H. (2002). Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing, 11(4), 467–476.Google Scholar
  22. 22.
    Lu, X., Jain, A. K., & Colbry, D. (2006). Matching 2.5D face scans to 3D models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 31–43.Google Scholar
  23. 23.
    Madeira, S. C., & Oliveira, A. L. (2004). Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1), 24–45.Google Scholar
  24. 24.
    Makinen, E., & Raisamo, R. (2008). Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(3), 541–547.Google Scholar
  25. 25.
    Mukhopadhyay, A., & Maulik, U. (2009). Towards improving fuzzy clustering using support vector machine: Application to gene expression data. Pattern Recognition, 42, 2744–2763.zbMATHGoogle Scholar
  26. 26.
    Okun, O., & Priisalu, H. (2006). Fast nonnegative matrix factorization and its application for protein fold recognition. EURASIP Journal on Advances in Signal Processing, 2006, Article ID 71817, 8 pp.Google Scholar
  27. 27.
    Plamondon, R., & Srihari, S. N. (2000). On-line and off-line handwriting recognition: A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 63–84.Google Scholar
  28. 28.
    Ramsden, J. J. (2009). Bioinformatics: An introduction (2nd ed.). London: Springer.zbMATHGoogle Scholar
  29. 29.
    Shalaby, M. A. W., & Ahmad, M. O. (2013). A multilevel structural technique for fingerprint representation and matching. Signal Processing, 93(1), 56–69.Google Scholar
  30. 30.
    Smith, T., & Waterman, M. (1981). Identification of common molecular subsequences. Journal of Molecular Biology, 147, 195–197.Google Scholar
  31. 31.
    Socolinsky, D. A., & Selinger, A. (2004). Thermal face recognition in an operational scenario. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Vol. 2, pp. 1012–1019).Google Scholar
  32. 32.
    Su, G., Zhang, C., Ding, R., & Du, C. (2002). MMP-PCA face recognition method. Electronics Letters, 38(25), 1654–1656.Google Scholar
  33. 33.
    Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3, 71–86.Google Scholar
  34. 34.
    Wang, H., & Chang, S.-F. (1997). A highly efficient system for automatic face region detection in MPEG video. IEEE Transactions on Circuits and Systems for Video Technology, 7(4), 615–628.Google Scholar
  35. 35.
    Wang, P., Green, M. B., Ji, Q., & Wayman, J. (2005). Automatic eye detection and its validation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 164–165). San Diego, CA.Google Scholar
  36. 36.
    Xu, R., Wunsch, D. C, I. I., & Frank, R. L. (2007). Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(4), 681–692.Google Scholar
  37. 37.
    Yang, M.-H., Kriegman, D. J., & Ahuja, N. (2002). Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1), 34–58.Google Scholar
  38. 38.
    Yang, W. H., Dai, D. Q., & Yan, H. (2007). Biclustering of microarray data based on singular value decomposition. In Emerging technologies in knowledge discovery and data mining, LNCS (Vol. 4819, pp. 194–205). Berlin: Springer.Google Scholar
  39. 39.
    Yang, J., Yu, K., Gong, Y., & Huang, T. (2009). Linear spatial pyramid matching using sparse coding for image classification. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 1794–1801). Miami, FL.Google Scholar
  40. 40.
    Yang, P., Zhong, L., & Metaxas, D. (2010). Ranking model for facial age estimation. In Proceedings of IEEE Conference on Pattern Recognition (pp. 3404–3407). Istanbul, Turkey.Google Scholar
  41. 41.
    Yoruk, E., Konukoglu, E., Sankur, B., & Darbon, J. (2006). Shape-based hand recognition. IEEE Transactions on Image Processing, 15(7), 1803–1815.Google Scholar
  42. 42.
    Zhang, D., Kong, W. K., You, J., & Wong, M. (2003). Online palmprint identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9), 1041–1050.Google Scholar
  43. 43.
    Zhang, D., Liu, Z., & Yan, J.-Q. (2010). Dynamic tongue print: A novel biometric identifier. Pattern Recognition, 43, 1071–1082.zbMATHGoogle Scholar
  44. 44.
    Zhao, Y., & Chua, T.-S. (2003). Automatic tracking of face sequences in MPEG video. In Proceedings of Computer Graphics International (pp. 170–175). Tokyo, Japan.Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada
  2. 2.Xonlink Inc.HangzhouChina

Personalised recommendations