Advertisement

Independent Component Analysis

  • Ke-Lin DuEmail author
  • M. N. S. Swamy
Chapter

Abstract

Blind source separation is a basic topic in signal and image processing. Independent component analysis is a basic solution to blind source separation. This chapter introduces blind source separation, with importance attached to independent component analysis. Some methods related to source separation for time series are also mentioned.

References

  1. 1.
    Akaho, S., Kiuchi, Y., & Umeyama, S. (1999). MICA: Multidimensional independent component analysis. In Proceedings of the International Joint Conference on Neural Networks (IJCNN) (pp. 927–932). Washington, DC.Google Scholar
  2. 2.
    Almeida, L. B. (2003). MISEP—Linear and nonlinear ICA based on mutual information. Journal of Machine Learning Research, 4, 1297–1318.zbMATHGoogle Scholar
  3. 3.
    Almeida, M., Schleimer, J.-H., Bioucas-Dias, J., & Vigario, R. (2011). Source separation and clustering of phase-locked subspaces. IEEE Transactions on Neural Networks, 22(9), 1419–1434.CrossRefGoogle Scholar
  4. 4.
    Almeida, M., Vigario, R., & Bioucas-Dias, J. (2011). Phase locked matrix factorization. In Proceedings of the 19th European Signal Processing Conference (EUSIPCO) (pp. 1728–1732). Barcelona, Spain.Google Scholar
  5. 5.
    Amari, S. I., Cichocki, A., & Yang, H. (1996). A new learning algorithm for blind signal separation. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems (Vol. 8, pp. 757–763). Cambridge, MA: MIT Press.Google Scholar
  6. 6.
    Amari, S., Douglas, S. C., Cichocki, A., & Yang, H. H. (1997). Multichannel blind deconvolution and equalization using the natural gradient. In Proceedings of the IEEE Workshop on Signal Processing Advances in Wireless Communications (pp. 101–104).Google Scholar
  7. 7.
    Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation, 10(2), 251–276.CrossRefGoogle Scholar
  8. 8.
    Amari, S. (1999). Natural gradient learning for over- and under-complete bases in ICA. Neural Computation, 11, 1875–1883.CrossRefGoogle Scholar
  9. 9.
    Armstrong, B. C., Ruiz-Blondet, M. V., Khalifian, N., Kurtz, K. J., Jin, Z., & Laszlo, S. (2015). Brainprint: Assessing the uniqueness, collectability, and permanence of a novel method for ERP biometrics. Neurocomputing, 166, 59–67.CrossRefGoogle Scholar
  10. 10.
    Astakhov, S. A., Stogbauer, H., Kraskov, A., & Grassberger, P. (2006). Monte Carlo algorithm for least dependent non-negative mixture decomposition. Analytical Chemistry, 78(5), 1620–1627.CrossRefGoogle Scholar
  11. 11.
    Babaie-Zadeh, M., Jutten, C., & Mansour, A. (2006). Sparse ICA via cluster-wise PCA. Neurocomputing, 69, 1458–1466.CrossRefGoogle Scholar
  12. 12.
    Baldi, P., & Hornik, K. (1989). Neural networks for principal component analysis: Learning from examples without local minima. Neural Networks, 2, 53–58.CrossRefGoogle Scholar
  13. 13.
    Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.CrossRefGoogle Scholar
  14. 14.
    Bingham, E., & Hyvarinen, A. (2000). ICA of complex valued signals: A fast and robust deflationary algorithm. In Proceedings of the International Joint Conference on Neural Networks (IJCNN) (Vol. 3, pp. 357–362). Como, Italy.Google Scholar
  15. 15.
    Blanco, D., Mulgrew, B., McLaughlin, S., Ruiz, D. P., & Carrion, M. C. (2006). The use of ICA in multiplicative noise. Neurocomputing, 69, 1435–1441.CrossRefGoogle Scholar
  16. 16.
    Blanco, D., Mulgrew, B., Ruiz, D. P., & Carrion, M. C. (2007). Independent component analysis in signals with multiplicative noise using fourth-order statistics. Signal Processing, 87, 1917–1932.zbMATHCrossRefGoogle Scholar
  17. 17.
    Blythe, D. A. J., von Bunau, P., Meinecke, F. C., & Muller, K.-R. (2012). Feature extraction for change-point detection using stationary subspace analysis. IEEE Transactions on Neural Networks and Learning Systems, 23(4), 631–643.CrossRefGoogle Scholar
  18. 18.
    Bofill, P., & Zibulevsky, M. (2001). Underdetermined blind source separation using sparse representations. Signal Processing, 81(11), 2353–2362.zbMATHCrossRefGoogle Scholar
  19. 19.
    Burel, G. (1992). Blind separation of sources: A nonlinear neural algorithm. Neural Networks, 5, 937–947.CrossRefGoogle Scholar
  20. 20.
    Calhoun, V., & Adali, T. (2006). Complex infomax: Convergence and approximation of infomax with complex nonlinearities. Journal of VLSI Signal Processing, 44, 173–190.zbMATHCrossRefGoogle Scholar
  21. 21.
    Campisi, P., & La Rocca, D. (2014). Brain waves for automatic biometric based user recognition. IEEE Transactions on Information Forensics and Security, 9(5), 782–800.CrossRefGoogle Scholar
  22. 22.
    Cardoso, J.-F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian signals. IEE Proceedings—F, 140(6), 362–370.Google Scholar
  23. 23.
    Cardoso, J.-F., & Laheld, B. H. (1996). Equivariant adaptive source separation. IEEE Transactions on Signal Processing, 44(12), 3017–3030.CrossRefGoogle Scholar
  24. 24.
    Cardoso, J.-F. (1997). Infomax and maximum likelihood for blind source separation. Signal Processing Letters, 4(4), 112–114.CrossRefGoogle Scholar
  25. 25.
    Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural Computation, 11, 157–192.CrossRefGoogle Scholar
  26. 26.
    Cardoso, J.-F. (2003). Dependence, correlation and Gaussianity in independent component analysis. Journal of Machine Learning Research, 4, 1177–1203.MathSciNetzbMATHGoogle Scholar
  27. 27.
    Cardoso, J.-F., & Adali, T. (2006). The maximum likelihood approach to complex ICA. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 673–676). Toulouse, France.Google Scholar
  28. 28.
    Chan, T.-H., Ma, W.-K., Chi, C.-Y., & Wang, Y. (2008). A convex analysis framework for blind separation of non-negative sources. IEEE Transactions on Signal Processing, 56(10), 5120–5134.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Choi, H., Kim, S., & Choi, S. (2004). Trust-region learning for ICA. In Proceedings of the International Joint Conference on Neural Networks (IJCNN) (pp. 41–46). Budapest, Hungary.Google Scholar
  30. 30.
    Choi, H., & Choi, S. (2007). A relative trust-region algorithm for independent component analysis. Neurocomputing, 70, 1502–1510.CrossRefGoogle Scholar
  31. 31.
    Choi, S., Cichocki, A., & Amari, S. (2002). Equivariant nonstationary source separation. Neural Networks, 15, 121–130.CrossRefGoogle Scholar
  32. 32.
    Choi, S. (2006). Differential learning algorithms for decorrelation and independent component analysis. Neural Networks, 19, 1558–1567.zbMATHCrossRefGoogle Scholar
  33. 33.
    Cichocki, A., Douglas, S. C., & Amari, S. (1998). Robust techniques for independent component analysis (ICA) with noisy data. Neurocomputing, 22, 113–129.zbMATHCrossRefGoogle Scholar
  34. 34.
    Comon, P. (1994). Independent component analysis—A new concept? Signal Processing, 36(3), 287–314.zbMATHCrossRefGoogle Scholar
  35. 35.
    Correa, N., Adali, T., Li, Y., & Calhoun, V. D. (2005). Comparison of blind source separation algorithms for fMRI using a new matlab toolbox: GIFT. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 401–404). Philadelphia, PA.Google Scholar
  36. 36.
    Creutzig, F., & Sprekeler, H. (2008). Predictive coding and the slowness principle: An information-theoretic approach. Neural Computation, 20(4), 1026–1041.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Cruces, S. (2010). Bounded component analysis of linear mixtures: A criterion of minimum convex perimeter. IEEE Transactions on Signal Processing, 58(4), 2141–2154.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Douglas, S. C. (2007). Fixed-point algorithms for the blind separation of arbitrary complex-valued non-Gaussian signal mixtures. EURASIP Journal on Advances in Signal Processing, 2007, Article ID 36525, 15 pp.Google Scholar
  39. 39.
    Douglas, S. C., & Chao, J.-C. (2007). Simple, robust, and memory-efficient FastICA algorithms using the Huber M-estimator cost function. Journal of VLSI Signal Processing, 48, 143–159.CrossRefGoogle Scholar
  40. 40.
    Erdogan, A. T. (2012). A family of bounded component analysis algorithms. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 1881–1884). Kyoto, Japan.Google Scholar
  41. 41.
    Erdogmus, D., Hild, II, K. E., Rao, Y. N., & Principe, J. C. (2004). Minimax mutual information approach for independent component analysis. Neural Computation, 16, 1235–1252.Google Scholar
  42. 42.
    Eriksson, J., & Koivunen, V. (2004). Identifiability, separability and uniqueness of linear ICA models. Signal Processing Letters, 11(7), 601–604.CrossRefGoogle Scholar
  43. 43.
    Eriksson, J., & Koivunen, V. (2006). Complex random vectors and ICA models: Identifiability, uniqueness, and separability. IEEE Transactions on Information Theory, 52(3), 1017–1029.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Escalante, B., Alberto, N., & Wiskott, L. (2013). How to solve classification and regression problems on high-dimensional data with a supervised extension of slow feature analysis. Journal of Machine Learning Research, 14(1), 3683–3719.MathSciNetzbMATHGoogle Scholar
  45. 45.
    Fiori, S. (2000). Blind separation of circularly-distributed sources by neural extended APEX algorithm. Neurocomputing, 34, 239–252.zbMATHCrossRefGoogle Scholar
  46. 46.
    Fiori, S. (2003). Extended Hebbian learning for blind separation of complex-valued sources sources. IEEE Transactions on Circuits and Systems II, 50(4), 195–202.CrossRefGoogle Scholar
  47. 47.
    Foldiak, P. (1991). Learning invariance from transformation sequences. Neural Computation, 3(2), 194–200.CrossRefGoogle Scholar
  48. 48.
    Giannakopoulos, X., Karhunen, J., & Oja, E. (1999). An experimental comparison of neural algorithms for independent component analysis and blind separation. International Journal of Neural Systems, 9(2), 99–114.CrossRefGoogle Scholar
  49. 49.
    Goerg, G. (2013). Forecastable component analysis. In Proceedings of the 30th International Conference on Machine Learning (ICML 2013) (Vol. 28, pp. 64–72).Google Scholar
  50. 50.
    Hara, S., Kawahara, Y., Washio, T., von Bunau, P., Tokunaga, T., & Yumoto, K. (2012). Separation of stationary and non-stationary sources with a generalized eigenvalue problem. Neural Networks, 33, 7–20.Google Scholar
  51. 51.
    Haritopoulos, M., Yin, H., & Allinson, N. M. (2002). Image denoising using self-organizing map-based nonlinear independent component analysis. Neural Networks, 15, 1085–1098.CrossRefGoogle Scholar
  52. 52.
    Hild, II, K. E., Attias, H. T., & Nagarajan, S. S. (2008). An expectation-maximization method for spatio-temporal blind source separation using an AR-MOG source model. IEEE Transactions on Neural Networks, 19(3), 508–519.Google Scholar
  53. 53.
    Hyvarinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7), 1483–1492.CrossRefGoogle Scholar
  54. 54.
    Hyvarinen, A. (1998). New approximations of differential entropy for independent component analysis and projection pursuit. In M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Advances in neural information processing (Vol. 10, pp. 273–279). Cambridge, MA: MIT Press.Google Scholar
  55. 55.
    Hyvarinen, A., & Oja, E. (1998). Independent component analysis by general non-linear Hebbian-like learning rules. Signal Processing, 64, 301–313.zbMATHCrossRefGoogle Scholar
  56. 56.
    Hyvarinen, A., & Pajunen, P. (1999). Nonlinear independent component analysis: Existence and uniqueness results. Neural Networks, 12, 429–439.CrossRefGoogle Scholar
  57. 57.
    Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.CrossRefGoogle Scholar
  58. 58.
    Hyvarinen, A., Sarela, J., & Vigario, R. (1999). Spikes and bumps: Artefacts generated by independent component analysis with insufficient sample size. In Proceedings of the International Workshop on ICA (pp. 425–429). Aussois, France.Google Scholar
  59. 59.
    Hyvarinen, A., & Hoyer, P. O. (2000). Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces. Neural Computation, 12(7), 1705–1720.CrossRefGoogle Scholar
  60. 60.
    Hyvarinen, A. (2001). Blind source separation by nonstationarity of variance: A cumulant-based approach. IEEE Transactions on Neural Networks, 12(6), 1471–1474.CrossRefGoogle Scholar
  61. 61.
    Hyvarinen, A., Hoyer, P. O., & Inki, M. (2001). Topographic independent component analysis. Neural Computation, 13, 1527–1558.zbMATHCrossRefGoogle Scholar
  62. 62.
    Hyvarinen, A., & Raju, K. (2002). Imposing sparsity on the mixing matrix in independent component analysis. Neurocomputing, 49, 151–162.zbMATHCrossRefGoogle Scholar
  63. 63.
    Hyvarinen, A., & Koster, U. (2006). FastISA: A fast fixed-point algorithm for independent subspace analysis. In Proceedings of the 14th European Symposium on Artificial Neural Networks (pp. 371–376). Bruges, Belgium.Google Scholar
  64. 64.
    Igual, J., Vergara, L., Camacho, A., & Miralles, R. (2003). Independent component analysis with prior information about the mixing matrix. Neurocomputing, 50, 419–438.zbMATHCrossRefGoogle Scholar
  65. 65.
    Inan, H. A., & Erdogan, A. T. (2015). Convolutive bounded component analysis algorithms for independent and dependent source separation. IEEE Transactions on Neural Networks and Learning Systems, 26(4), 697–708.MathSciNetCrossRefGoogle Scholar
  66. 66.
    Javidi, S., Took, C. C., & Mandic, D. P. (2011). Fast independent component analysis algorithm for quaternion valued signals. IEEE Transactions on Neural Networks, 22(12), 1967–1978.CrossRefGoogle Scholar
  67. 67.
    Jutten, C., & Herault, J. (1991). Blind separation of sources, Part I. An adaptive algorithm based on a neuromimetic architecture. Signal Processing, 24(1), 1–10.Google Scholar
  68. 68.
    Kameoka, H., Ono, N., Kashino, K., & Sagayama, S. (2009). Complex NMF: A new sparse representation for acoustic signals. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 3437–3440).Google Scholar
  69. 69.
    Karhunen, J., Oja, E., Wang, L., Vigario, R., & Joutsensalo, J. (1997). A class of neural networks for independent component analysis. IEEE Transactions on Neural Networks, 8(3), 486–504.CrossRefGoogle Scholar
  70. 70.
    Karhunen, J., & Pajunen, P. (1997). Blind source separation and tracking using nonlinear PCA criterion: A least-squares approach. In Proceedings of the IEEE Internal Conference on Neural Networks (Vol. 4, pp. 2147–2152). Houston, TX.Google Scholar
  71. 71.
    Karhunen, J., Pajunen, P., & Oja, E. (1998). The nonlinear PCA criterion in blind source separation: Relations with other approaches. Neurocomputing, 22(1), 5–20.zbMATHCrossRefGoogle Scholar
  72. 72.
    Karhunen, J., Malaroiu, S., & Ilmoniemi, M. (1999). Local linear independent component analysis based on clustering. International Journal of Neural Systems, 10(6), 439–451.CrossRefGoogle Scholar
  73. 73.
    Kawamoto, M., Matsuoka, K., & Ohnishi, N. (1998). A method of blind separation for convolved nonstationary signals. Neurocomputing, 22, 157–171.zbMATHCrossRefGoogle Scholar
  74. 74.
    Kim, S., & Yoo, C. D. (2009). Underdetermined blind source separation based on subspace representation. IEEE Transactions on Signal Processing, 57(7), 2604–2614.MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Kim, T. (2010). Real-time independent vector analysis for convolutive blind source separation. IEEE Transactions on Circuits and Systems I, 57(7), 1431–1438.MathSciNetCrossRefGoogle Scholar
  76. 76.
    King, B. J., & Atlas, L. (2011). Single-channel source separation using complex matrix factorization. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 19(8), 2591–2597.CrossRefGoogle Scholar
  77. 77.
    Klampfl, S., Legenstein, R., & Maass, W. (2009). Spiking neurons can learn to solve information bottleneck problems and extract independent components. Neural Computation, 21, 911–959.MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Kokkinakis, K., & Nandi, A. K. (2007). Generalized gamma density-based score functions for fast and flexible ICA. Signal Processing, 87, 1156–1162.zbMATHCrossRefGoogle Scholar
  79. 79.
    Koldovsky, Z., Tichavsky, P., & Oja, E. (2005). Cramer–Rao lower bound for linear independent component analysis. In Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (Vol. 3, pp. 581–584). Philadelphia, PA.Google Scholar
  80. 80.
    Koldovsky, Z., Tichavsky, P., & Oja, E. (2006). Efficient variant of algorithm FastICA for independent component analysis attaining the Cramer–Rao lower bound. IEEE Transactions on Neural Networks, 17(5), 1265–1277.zbMATHCrossRefGoogle Scholar
  81. 81.
    Kompella, V. R., Luciw, M. D., & Schmidhuber, J. (2012). Incremental slow feature analysis: Adaptive low-complexity slow feature updating from high-dimensional input streams. Neural Computation, 24(11), 2994–3024.zbMATHCrossRefGoogle Scholar
  82. 82.
    Kompella, V. R., Luciw, M., Stollenga, M. F., & Schmidhuber, J. (2016). Optimal curiosity-driven modular incremental slow feature analysis. Neural Computation, 28(8), 1599–1662.MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Learned-Miller, E. G., & Fisher, III, J. W. (2003). ICA using spacings estimates of entropy. Journal of Machine Learning Research, 4, 1271–1295.Google Scholar
  84. 84.
    Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Indepedent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417–441.CrossRefGoogle Scholar
  85. 85.
    Li, H., & Adali, T. (2008). A class of complex ICA algorithms based on the kurtosis cost function. IEEE Transactions on Neural Networks, 19(3), 408–420.CrossRefGoogle Scholar
  86. 86.
    Li, X.-L., & Adali, T. (2010). Complex independent component analysis by entropy bound minimization. IEEE Transactions on Circuits and Systems I, 57(7), 1417–1430.MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Li, H., & Adali, T. (2010). Algorithms for complex ML ICA and their stability analysis using Wirtinger calculus. IEEE Transactions on Signal Processing, 58(12), 6156–6167.MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Li, Y., Cichocki, A., & Amari, S.-I. (2004). Analysis of sparse representation and blind source separation. Neural Computation, 16(6), 1193–1234.zbMATHCrossRefGoogle Scholar
  89. 89.
    Lu, W., & Rajapakse, J. C. (2003). Eliminating indeterminacy in ICA. Neurocomputing, 50, 271–290.zbMATHCrossRefGoogle Scholar
  90. 90.
    Lu, W., & Rajapakse, J. C. (2005). Approach and applications of constrained ICA. IEEE Transactions on Neural Networks, 16(1), 203–212.CrossRefGoogle Scholar
  91. 91.
    Lu, W., & Rajapakse, J. C. (2006). ICA with reference. Neurocomputing, 69, 2244–2257.CrossRefGoogle Scholar
  92. 92.
    Martin-Clemente, R., & Zarzoso, V. (2017). On the link between \(L_1\)-PCA and ICA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(3), 515–528.CrossRefGoogle Scholar
  93. 93.
    Marvasti, F., Amini, A., Haddadi, F., Soltanolkotabi, M., Khalaj, B. H., Aldroubi, A., et al. (2012). A unified approach to sparse signal processing. EURASIP Journal on Advances in Signal Processing, 2012(44), 1–45.Google Scholar
  94. 94.
    Matsuoka, K., Ohya, M., & Kawamoto, M. (1995). A neural net for blind separation of nonstationary signals. Neural Networks, 8(3), 411–419.CrossRefGoogle Scholar
  95. 95.
    Mollah, M. N. H., Eguchi, S., & Minami, M. (2007). Robust prewhitening for ICA by minimizing \(\beta \)-divergence and its application to FastICA. Neural Processing Letters, 25, 91–110.CrossRefGoogle Scholar
  96. 96.
    Murata, N., Ikeda, S., & Ziehe, A. (2001). An approach to blind source separation based on temporal structure of speech signals. Neurocomputing, 41, 1–24.zbMATHCrossRefGoogle Scholar
  97. 97.
    Naik, G. R., & Kumar, D. K. (2009). Determining number of independent sources in undercomplete mixture. EURASIP Journal on Advances in Signal Processing, 2009, Article ID 694850, 5 pp.Google Scholar
  98. 98.
    Novey, M., & Adali, T. (2008). Complex ICA by negentropy maximization. IEEE Transactions on Neural Networks, 19(4), 596–609.CrossRefGoogle Scholar
  99. 99.
    Novey, M., & Adali, T. (2008). On extending the complex FastICA algorithm to noncircular sources. IEEE Transactions on Signal Processing, 56(5), 2148–2154.MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    Oja, E., & Plumbley, M. (2004). Blind separation of positive sources by globally convergent gradient search. Neural Computation, 16, 1811–1825.zbMATHCrossRefGoogle Scholar
  101. 101.
    Oja, E., & Yuan, Z. (2006). The FastICA algorithm revisited: Convergence analysis. IEEE Transactions on Neural Networks, 17(6), 1370–1381.CrossRefGoogle Scholar
  102. 102.
    Ollila, E., & Koivunen, V. (2009). Complex ICA using generalized uncorrelating transform. Signal Processing, 89, 365–377.zbMATHCrossRefGoogle Scholar
  103. 103.
    Ollila, E. (2010). The deflation-based FastICA estimator: Statistical analysis revisited. IEEE Transactions on Signal Processing, 58(3), 1527–1541.MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Pajunen, P. (1998). Blind source separation using algorithmic information theory. Neurocomputing, 22, 35–48.zbMATHCrossRefGoogle Scholar
  105. 105.
    Park, H.-M., Oh, S.-H., & Lee, S.-Y. (2006). A modified infomax algorithm for blind signal separation. Neurocomputing, 70, 229–240.CrossRefGoogle Scholar
  106. 106.
    Pham, D.-T. (2000). Blind separation of instantenaous mixtrures of sources based on order statistics. IEEE Transactions on Signal Processing, 48(2), 363–375.MathSciNetCrossRefGoogle Scholar
  107. 107.
    Plumbley, M. D. (2003). Algorithms for nonnegative independent component analysis. IEEE Transactions on Neural Networks, 14(3), 534–543.CrossRefGoogle Scholar
  108. 108.
    Poczos, B., & Lorincz, A. (2005). Independent subspace analysis using geodesic spanning trees. In Proceedings of the 22nd International Conference on Machine Learning (pp. 673–680). Bonn, Germany.Google Scholar
  109. 109.
    Richthofer, S., & Wiskott, L. (2015). Predictable feature analysis. Proceedings of the IEEE 14th International Conference on Machine Learning and Applications. Miami, FL.Google Scholar
  110. 110.
    Ristaniemi, T., & Joutsensalo, J. (2002). Advanced ICA-based receivers for block fading DS-CDMA channels. Signal Processing, 82(3), 417–431.zbMATHCrossRefGoogle Scholar
  111. 111.
    Samadi, S., Babaie-Zadeh, M., & Jutten, C. (2006). Quasi-optimal EASI algorithm based on the Score Function Difference (SFD). Neurocomputing, 69, 1415–1424.CrossRefGoogle Scholar
  112. 112.
    Sarela, J., & Vigario, R. (2003). Overlearning in marginal distribution-based ICA: Analysis and solutions. Journal of Machine Learning Research, 4, 1447–1469.MathSciNetzbMATHGoogle Scholar
  113. 113.
    Sawada, H., Mukai, R., Araki, S., & Makino, S. (2004). A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Transactions on Speech and Audio Processing, 12(5), 530–538.CrossRefGoogle Scholar
  114. 114.
    Schell, S. V., & Gardner, W. A. (1995). Programmable canonical correlation analysis: A flexible framework for blind adaptive spatial filtering. IEEE Transactions on Signal Processing, 42(12), 2898–2908.CrossRefGoogle Scholar
  115. 115.
    Schobben, L., & Sommen, W. (2002). A frequency domain blind signal separation method based on decorrelation. IEEE Transactions on Signal Processing, 50, 1855–1865.CrossRefGoogle Scholar
  116. 116.
    Shen, H., Kleinsteuber, M., & Huper, K. (2008). Local convergence analysis of FastICA and related algorithms. IEEE Transactions on Neural Networks, 19(6), 1022–1032.CrossRefGoogle Scholar
  117. 117.
    Smaragdis, P. (1998). Blind separation of convolved mixtures in the frequency domain. Neurocomputing, 22, 21–34.zbMATHCrossRefGoogle Scholar
  118. 118.
    Sprekeler, H., Zito, T., & Wiskott, L. (2014). An extension of slow feature analysis for nonlinear blind source separation. Journal of Machine Learning Research, 15, 921–947.MathSciNetzbMATHGoogle Scholar
  119. 119.
    Tan, Y., Wang, J., & Zurada, J. M. (2001). Nonlinear blind source separation using a radial basis function network. IEEE Transactions on Neural Networks, 12(1), 134–144.Google Scholar
  120. 120.
    Tichavsky, P., Koldovsky, Z., & Oja, E. (2005). Asymptotic performance of the FastICA algorithm for independent component analysis and its improvements. In Proceedings of IEEE Workshop on Statistical Signal Processing (pp. 1084–1089). Bordeaux, France.Google Scholar
  121. 121.
    Van Hulle, M. M. (2008). Sequential fixed-point ICA based on mutual information minimization. Neural Computation, 20, 1344–1365.zbMATHCrossRefGoogle Scholar
  122. 122.
    Van Hulle, M. M. (2008). Constrained subspace ICA based on mutual information optimization directly. Neural Computation, 20, 964–973.zbMATHCrossRefGoogle Scholar
  123. 123.
    von Bunau, P., Meinecke, F. C., Kiraly, F. C., & Muller, K.-R. (2009). Finding stationary subspaces in multivariate time series. Physical Review Letters, 103(21), 214101.CrossRefGoogle Scholar
  124. 124.
    Wang, F.-Y., Chi, C.-Y., Chan, T.-H., & Wang, Y. (2010). Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5), 875–888.CrossRefGoogle Scholar
  125. 125.
    Weghenkel, B., Fischer, A., & Wiskott, L. (2017). Graph-based predictable feature analysis. Machine Learning, 106, 1359–1380.MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Wiskott, L. (2003). Slow feature analysis: A theoretical analysis of optimal free responses. Neural Computation, 15(9), 2147–2177.zbMATHCrossRefGoogle Scholar
  127. 127.
    Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 14(4), 715–770.zbMATHCrossRefGoogle Scholar
  128. 128.
    Yadav, R., Agarwal, R., & Swamy, M. N. S. (2012). Model-based seizure detection for intracranial EEG recordings. IEEE Transactions on Biomedical Engineering, 59, 1419–1428.CrossRefGoogle Scholar
  129. 129.
    Ye, M. (2006). Global convergence analysis of a discrete time nonnegative ICA algorithm. IEEE Transactions on Neural Networks, 17(1), 253–256.CrossRefGoogle Scholar
  130. 130.
    Zarzoso, V., & Comon, P. (2010). Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size. IEEE Transactions on Neural Networks, 21(2), 248–261.CrossRefGoogle Scholar
  131. 131.
    Zarzoso, V., Comon, P., & Phlypo, R. (2010). A contrast function for independent component analysis without permutation ambiguity. IEEE Transactions on Neural Networks, 21(5), 863–868.CrossRefGoogle Scholar
  132. 132.
    Zhang, K., & Chan, L. (2008). Minimal nonlinear distortion principle for nonlinear independent component analysis. Journal of Machine Learning Research, 9, 2455–2487.MathSciNetzbMATHGoogle Scholar
  133. 133.
    Zheng, C.-H., Huang, D.-S., Sun, Z.-L., Lyu, M. R., & Lok, T.-M. (2006). Nonnegative independent component analysis based on minimizing mutual information technique. Neurocomputing, 69, 878–883.CrossRefGoogle Scholar
  134. 134.
    Ziegaus, Ch., & Lang, E. W. (2004). A neural implementation ofthe JADE algorithm (nJADE) using higher-order neurons. Neurocomputing, 56, 79–100.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada
  2. 2.Xonlink Inc.HangzhouChina

Personalised recommendations