Advertisement

Anatomy and Physiology of the Mitral Valve

  • Narain Moorjani
  • Bushra S. Rana
  • Francis C. Wells
Chapter

Abstract

The heart is a dynamic living pump that has evolved in such a way that the whole organ functions as a holistic unit, which can adapt to the constantly changing demands of flow and pressure. Efficient function of this pump requires the presence of unidirectional valves. Nature has evolved valves that both operate under the highest pressure that the heart can generate and that also maintain the structural integrity of the muscle chambers that house them. Of all the cardiac valves, the mitral has the biggest task. It has to withstand the highest closing pressure and support the left ventricle, the powerhouse of the heart.

Keywords

Anatomy Physiology Embryology Leaflet Chordae tendinae Papillary muscle Commissure Annulus Cleft Trigone 

Recommended Reading

  1. Angelini A, Ho SY, Anderson RH, Davies MJ, Becker AE. A histological study of the atrioventricular junction in hearts with normal and prolapsed leaflets of the mitral valve. Br Heart J. 1988;59(6):712–6.CrossRefGoogle Scholar
  2. Buckberg G1, Hoffman JI, Mahajan A, Saleh S, Coghlan C. Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation. 2008;118(24):2571–87.CrossRefGoogle Scholar
  3. Hinton R, Yutzey E. Heart valve structure and function in development and disease. Annu Rev Physiol. 2011;73:29–46.CrossRefGoogle Scholar
  4. Ho SY. Anatomy and myo-architecture of the left ventricular wall in normal and in disease. Eur J Echocardiogr. 2009;10(8):iii3–7.CrossRefGoogle Scholar
  5. Levack MM, Jassar AS, Shang EK, Vergnat M, Woo YJ, Acker MA, Jackson BM, Gorman JH 3rd, Gorman RC. Three-dimensional echocardiographic analysis of the mitral annular dynamics. Implications for annuloplasty selection. Circulation. 2012;126(suppl 1):S183–8.CrossRefGoogle Scholar
  6. Levine RA, Hagége AA, Judge DP, Padala M, Dal-Bianco JP, Aikawa E, Beaudoin J, Bischoff J, Bouatia-Naji N, Bruneval P, Butcher JT, Carpentier A, Chaput M, Chester AH11, Clusel C, Delling FN, Dietz HC, Dina C, Durst R, Fernandez-Friera L, Handschumacher MD, Jensen MO, Jeunemaitre XP, Le Marec H, Le Tourneau T14, Markwald RR, Mérot J, Messas E, Milan DP, Neri T, Norris RA, Peal D, Perrocheau M, Probst V, Pucéat M, Rosenthal N, Solis J, Schott JJ, Schwammenthal E, Slaugenhaupt SA, Song JK, Yacoub MH. Leducq mitral transatlantic network. Mitral valve disease – morphology and mechanisms. Nat Rev Cardiol. 2015;12(12):689–710.CrossRefGoogle Scholar
  7. Lillehei CW, Levy MJ, Bonnabeau RC. Mitral valve replacement with preservation of papillary muscles and chordae tendinae. J Thorac Cardiovasc Surg. 1964;47:532–43.PubMedGoogle Scholar
  8. Ring L, Rana BS, Ho SY, Wells FC. The prevalence and impact of deep clefts in the mitral leaflets in mitral valve prolapse. Eur Heart J Cardiovasc Imaging. 2013;14(6):595–602.CrossRefGoogle Scholar
  9. Ring L, Rana BS, Wells FC, Kydd AC, Dutka DP. Atrial function as a guide to timing of intervention in mitral valve prolapse with mitral regurgitation. JACC Cardiovasc Imaging. 2014;7(3):225–32.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Narain Moorjani
    • 1
  • Bushra S. Rana
    • 2
  • Francis C. Wells
    • 1
  1. 1.Department of Cardiothoracic SurgeryRoyal Papworth HospitalCambridgeUK
  2. 2.Department of CardiologyRoyal Papworth HospitalCambridgeUK

Personalised recommendations