Advertisement

Innovative Approaches to Mitral Valve Repair and Replacement

  • Joseph Lamelas
  • Corinne M. Aberle
  • Swaminadhan Gnanashanmugam
Chapter
Part of the Cardiovascular Medicine book series (CVM)

Abstract

Mitral valve disease is the most common valvular disorder worldwide. Mitral stenosis rates have been declining, but mitral regurgitation remains the most common valvular disease in the United States. Medical therapy has a limited role in the treatment of mitral valve disorders, and surgery with either valve repair or replacement remains the mainstay of treatment. A thorough understanding of the complex mitral valve apparatus, pathophysiology of the valve, echocardiographic findings, and grading classification of regurgitation and stenosis are all essential to guiding optimal patient management and, ultimately, surgical care.

Surgery for mitral valve disease has progressed significantly as innovations in surgical technique, instrumentation, and cardiopulmonary bypass have developed. Rather than standard sternotomy, various minimally invasive approaches are now used to gain access to the mitral valve. The most commonly employed minimally invasive approaches include the right mini-thoracotomy with direct vision, video thoracoscopic visualization, and robotically assisted surgical techniques. A thorough preoperative evaluation and an understanding of the indications and contraindications for using a minimally invasive approach are vital to proper patient selection. In addition, a detailed review of the patient’s echocardiograms, combined with knowledge of the mitral valve apparatus, helps determine which surgical technique is optimal for valve repair. Annuloplasty, leaflet resection or folding plasty, creating artificial chordae, commissurotomy, leaflet extension or augmentation, and an edge-to-edge Alfieri suture are among the techniques used in valve repair. Despite the availability of many techniques, valve repair is not always possible or feasible, in which case valve replacement is performed.

Various transcatheter and endovascular devices are available for both mitral valve repair and replacement. The transcatheter devices make possible a spectrum of repair techniques designed to imitate surgical repairs. Devices for annuloplasty, edge-to-edge repair, and the creation of artificial chordae have been developed, and many, such as the MitraClip, are already in widespread use. However, devices for transcatheter mitral valve replacement remain in the development stage. As these devices are further engineered and tested, they may become available for use in a larger patient population. Currently, they remain restricted to patients who are not surgical candidates.

Keywords

Mitral valve repair Mitral valve replacement Mitral valve stenosis Mitral valve regurgitation Minimally invasive cardiac surgery Robotic cardiac surgery Transcatheter mitral valve replacement Transcatheter mitral valve repair 

References

  1. 1.
    Corbi P, Rahmati M, Donal E, et al. Prospective comparison of minimally invasive and standard techniques for aortic valve replacement: initial experience in the first hundred patients. J Card Surg. 2003;18:133–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Lamelas J, Sarria A, Santana O, Pineda AM, Lamas GA. Outcomes of minimally invasive valve surgery versus median sternotomy in patients age 75 years or greater. Ann Thorac Surg. 2011;91:79–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Santana O, Reyna J, Benjo AM, Lamas GA, Lamelas J. Outcomes of minimally invasive valve surgery in patients with chronic obstructive pulmonary disease. Eur J Cardiothorac Surg. 2012;42:648–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Santana O, Reyna J, Grana R, Buendia M, Lamas GA, Lamelas J. Outcomes of minimally invasive valve surgery versus standard sternotomy in obese patients undergoing isolated valve surgery. Ann Thorac Surg. 2011;91:406–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Cohn LH. Fifty years of open-heart surgery. Circulation. 2003;107:2168–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Cosgrove DM 3rd, Sabik JF, Navia JL. Minimally invasive valve operations. Ann Thorac Surg. 1998;65:1535–8; discussion 1538–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Chan EY, Lumbao DM, Iribarne A, et al. Evolution of cannulation techniques for minimally invasive cardiac surgery: a 10-year journey. Innovations (Phila). 2012;7:9–14.CrossRefGoogle Scholar
  8. 8.
    Xu RB, Rahnavardi M, Nadal M, et al. Beating heart minimally invasive mitral valve surgery in patients with previous sternotomy: the operative technique and early outcomes. Open Heart. 2018;5:e000749.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Grossi EA, Loulmet DF, Schwartz CF, et al. Minimally invasive valve surgery with antegrade perfusion strategy is not associated with increased neurologic complications. Ann Thorac Surg. 2011;92:1346–9; discussion 1349–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Murzi M, Cerillo AG, Miceli A, et al. Antegrade and retrograde arterial perfusion strategy in minimally invasive mitral-valve surgery: a propensity score analysis on 1280 patients. Eur J Cardiothorac Surg. 2013;43:e167–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Murzi M, Glauber M. Central versus femoral cannulation during minimally invasive aortic valve replacement. Ann Cardiothorac Surg. 2015;4:59–61.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lamelas J, Williams RF, Mawad M, LaPietra A. Complications associated with femoral cannulation during minimally invasive cardiac surgery. Ann Thorac Surg. 2017;103:1927–32.PubMedCrossRefGoogle Scholar
  13. 13.
    LaPietra A, Santana O, Mihos CG, et al. Incidence of cerebrovascular accidents in patients undergoing minimally invasive valve surgery. J Thorac Cardiovasc Surg. 2014;148:156–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Iribarne A, Karpenko A, Russo MJ, et al. Eight-year experience with minimally invasive cardiothoracic surgery. World J Surg. 2010;34:611–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Navia JL, Cosgrove DM 3rd. Minimally invasive mitral valve operations. Ann Thorac Surg. 1996;62:1542–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Gillinov AM, Cosgrove DM. Minimally invasive mitral valve surgery: mini-sternotomy with extended transseptal approach. Semin Thorac Cardiovasc Surg. 1999;11:206–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Loulmet DF, Carpentier A, Cho PW, et al. Less invasive techniques for mitral valve surgery. J Thorac Cardiovasc Surg. 1998;115:772–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang D, Wang Q, Yang X, Wu Q, Li Q. Mitral valve replacement through a minimal right vertical infra-axillary thoracotomy versus standard median sternotomy. Ann Thorac Surg. 2009;87:704–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Cohn LH, Adams DH, Couper GS, et al. Minimally invasive cardiac valve surgery improves patient satisfaction while reducing costs of cardiac valve replacement and repair. Ann Surg. 1997;226:421–6; discussion 427–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Farhat F, Lu Z, Lefevre M, Montagna P, Mikaeloff P, Jegaden O. Prospective comparison between total sternotomy and ministernotomy for aortic valve replacement. J Card Surg. 2003;18:396–401; discussion 402–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Vanermen H, Vermeulen Y, Wellens F, De Geest R, Degrieck I, Van Praet F. Port-access mitral valve surgery. Perfusion. 1998;13:249–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Mohr FW, Falk V, Diegeler A, Walther T, van Son JA, Autschbach R. Minimally invasive port-access mitral valve surgery. J Thorac Cardiovasc Surg. 1998;115:567–74; discussion 574–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Carpentier A, Loulmet D, Carpentier A, et al. [Open heart operation under videosurgery and minithoracotomy. First case (mitral valvuloplasty) operated with success]. C R Acad Sci III. 1996;319:219–23.Google Scholar
  24. 24.
    Falk V, Walther T, Autschbach R, Diegeler A, Battellini R, Mohr FW. Robot-assisted minimally invasive solo mitral valve operation. J Thorac Cardiovasc Surg. 1998;115:470–1.PubMedCrossRefGoogle Scholar
  25. 25.
    Carpentier A, Loulmet D, Aupecle B, et al. [Computer assisted open heart surgery. First case operated on with success]. C R Acad Sci III. 1998;321:437–42.Google Scholar
  26. 26.
    Nishimura RA, Otto CM, Bonow RO, et al. 2017 AHA/ACC Focused Update of the AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. JACC. 2017;70:252–89.Google Scholar
  27. 27.
    Lehr EJ, Guy TS, Smith RL, et al. Minimally invasive mitral valve surgery III: training and robotic-assisted approaches. Innovations (Phila). 2016;11:260–7.CrossRefGoogle Scholar
  28. 28.
    Wolfe JA, Malaisrie SC, Farivar RS, et al. Minimally invasive mitral valve surgery II: surgical technique and postoperative management. Innovations (Phila). 2016;11:251–9.CrossRefGoogle Scholar
  29. 29.
    Irisawa Y, Hiraoka A, Totsugawa T, et al. Re-expansion pulmonary oedema after minimally invasive cardiac surgery with right mini-thoracotomy. Eur J Cardiothorac Surg. 2016;49:500–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Kitahara H, Okamoto K, Kudo M, et al. Successful management of severe unilateral re-expansion pulmonary edema after mitral valve repair with mini-thoracotomy using extracorporeal membrane oxygenation. Gen Thorac Cardiovasc Surg. 2017;65:164–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang Y, Gao CQ, Wang G, Wang JL. Transesophageal echocardiography guided cannulation for peripheral cardiopulmonary bypass during robotic cardiac surgery. Chin Med J. 2012;125:3236–9.PubMedGoogle Scholar
  32. 32.
    Carrier M, Cyr A, Voisine P, et al. Vacuum-assisted venous drainage does not increase the neurological risk. Heart Surg Forum. 2002;5:285–8.PubMedGoogle Scholar
  33. 33.
    Colangelo N, Torracca L, Lapenna E, Moriggia S, Crescenzi G, Alfieri O. Vacuum-assisted venous drainage in extrathoracic cardiopulmonary bypass management during minimally invasive cardiac surgery. Perfusion. 2006;21:361–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Mihos CG, Santana O, Lamas GA, Lamelas J. Outcomes of right minithoracotomy mitral valve surgery in patients with previous sternotomy. Ann Thorac Surg. 2011;91:1824–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Santana O, Funk M, Zamora C, Escolar E, Lamas GA, Lamelas J. Staged percutaneous coronary intervention and minimally invasive valve surgery: results of a hybrid approach to concomitant coronary and valvular disease. J Thorac Cardiovasc Surg. 2012;144:634–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368:1005–11.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Doshi JV, Agrawal S, Garg J, et al. Percutaneous mitral heart valve repair—MitraClip. Cardiol Rev. 2014;22:289–96.PubMedCrossRefGoogle Scholar
  38. 38.
    Gammie JS, Sheng S, Griffith BP, et al. Trends in mitral valve surgery in the United States: results from the Society of Thoracic Surgeons Adult Cardiac Surgery Database. Ann Thorac Surg. 2009;87:1431–7; discussion 1437–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Mirabel M, Iung B, Baron G, et al. What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur Heart J. 2007;28:1358–65.PubMedCrossRefGoogle Scholar
  40. 40.
    Patel JB, Borgeson DD, Barnes ME, Rihal CS, Daly RC, Redfield MM. Mitral regurgitation in patients with advanced systolic heart failure. J Card Fail. 2004;10:285–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Carpentier A, Chauvaud S, Fabiani JN, et al. Reconstructive surgery of mitral valve incompetence: ten-year appraisal. J Thorac Cardiovasc Surg. 1980;79:338–48.PubMedGoogle Scholar
  42. 42.
    Fornes P, Heudes D, Fuzellier JF, Tixier D, Bruneval P, Carpentier A. Correlation between clinical and histologic patterns of degenerative mitral valve insufficiency: a histomorphometric study of 130 excised segments. Cardiovasc Pathol. 1999;8:81–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Lam JH, Ranganathan N, Wigle ED, Silver MD. Morphology of the human mitral valve. I. Chordae tendineae: a new classification. Circulation. 1970;41:449–58.PubMedCrossRefGoogle Scholar
  44. 44.
    Ranganathan N, Lam JH, Wigle ED, Silver MD. Morphology of the human mitral valve. II. The value leaflets. Circulation. 1970;41:459–67.PubMedCrossRefGoogle Scholar
  45. 45.
    Carpentier A. Cardiac valve surgery—the “French correction”. J Thorac Cardiovasc Surg. 1983;86:323–37.PubMedGoogle Scholar
  46. 46.
    Pepi M, Tamborini G, Maltagliati A, et al. Head-to-head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse. J Am Coll Cardiol. 2006;48:2524–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Schwammenthal E, Chen C, Benning F, Block M, Breithardt G, Levine RA. Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation. 1994;90:307–22.PubMedCrossRefGoogle Scholar
  48. 48.
    Yoran C, Yellin EL, Becker RM, Gabbay S, Frater RW, Sonnenblick EH. Dynamic aspects of acute mitral regurgitation: effects of ventricular volume, pressure and contractility on the effective regurgitant orifice area. Circulation. 1979;60:170–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Braunwald E, Awe WC. The syndrome of severe mitral regurgitation with normal left atrial pressure. Circulation. 1963;27:29–35.PubMedCrossRefGoogle Scholar
  50. 50.
    Carabello BA. The current therapy for mitral regurgitation. J Am Coll Cardiol. 2008;52:319–26.PubMedCrossRefGoogle Scholar
  51. 51.
    Gaasch WH, Meyer TE. Left ventricular response to mitral regurgitation: implications for management. Circulation. 2008;118:2298–303.PubMedCrossRefGoogle Scholar
  52. 52.
    Enriquez-Sarano M, Hannachi M, Jais JM, Acar J. [Hemodynamic and angiographic results following surgical correction of mitral insufficiency. Apropos of 51 repeated catheterizations]. Arch Mal Coeur Vaiss. 1983;76:1194–1203.Google Scholar
  53. 53.
    Starling MR, Kirsh MM, Montgomery DG, Gross MD. Impaired left ventricular contractile function in patients with long-term mitral regurgitation and normal ejection fraction. J Am Coll Cardiol. 1993;22:239–50.PubMedCrossRefGoogle Scholar
  54. 54.
    Wisenbaugh T, Spann JF, Carabello BA. Differences in myocardial performance and load between patients with similar amounts of chronic aortic versus chronic mitral regurgitation. J Am Coll Cardiol. 1984;3:916–23.PubMedCrossRefGoogle Scholar
  55. 55.
    Corin WJ, Murakami T, Monrad ES, Hess OM, Krayenbuehl HP. Left ventricular passive diastolic properties in chronic mitral regurgitation. Circulation. 1991;83:797–807.PubMedCrossRefGoogle Scholar
  56. 56.
    Messika-Zeitoun D, Johnson BD, Nkomo V, et al. Cardiopulmonary exercise testing determination of functional capacity in mitral regurgitation: physiologic and outcome implications. J Am Coll Cardiol. 2006;47:2521–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Crawford MH, Souchek J, Oprian CA, et al. Determinants of survival and left ventricular performance after mitral valve replacement. Department of Veterans Affairs Cooperative Study on Valvular Heart Disease. Circulation. 1990;81:1173–81.PubMedCrossRefGoogle Scholar
  58. 58.
    Adams DH, Rosenhek R, Falk V. Degenerative mitral valve regurgitation: best practice revolution. Eur Heart J. 2010;31:1958–66.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    El-Tallawi KC, Messika-Zeitoun D, Zoghbi WA. Assessment of the severity of native mitral valve regurgitation. Prog Cardiovasc Dis. 2017;60:322–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Chinitz JS, Chen D, Goyal P, et al. Mitral apparatus assessment by delayed enhancement CMR: relative impact of infarct distribution on mitral regurgitation. JACC Cardiovasc Imaging. 2013;6:220–34.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Cawley PJ, Hamilton-Craig C, Owens DS, et al. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ Cardiovasc Imaging. 2013;6:48–57.PubMedCrossRefGoogle Scholar
  62. 62.
    Lopez-Mattei JC, Ibrahim H, Shaikh KA, et al. Comparative assessment of mitral regurgitation severity by transthoracic echocardiography and cardiac magnetic resonance using an integrative and quantitative approach. Am J Cardiol. 2016;117:264–70.PubMedCrossRefGoogle Scholar
  63. 63.
    Ngaage DL, Schaff HV. Mitral valve surgery in non-ischemic cardiomyopathy. J Cardiovasc Surg. 2004;45:477–86.Google Scholar
  64. 64.
    Dagum P, Timek TA, Green GR, et al. Coordinate-free analysis of mitral valve dynamics in normal and ischemic hearts. Circulation. 2000;102:III62–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Miller DC. Ischemic mitral regurgitation redux—to repair or to replace? J Thorac Cardiovasc Surg. 2001;122:1059–62.PubMedCrossRefGoogle Scholar
  66. 66.
    Enriquez-Sarano M, Tajik AJ, Schaff HV, Orszulak TA, Bailey KR, Frye RL. Echocardiographic prediction of survival after surgical correction of organic mitral regurgitation. Circulation. 1994;90:830–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Ling LH, Enriquez-Sarano M, Seward JB, et al. Early surgery in patients with mitral regurgitation due to flail leaflets: a long-term outcome study. Circulation. 1997;96:1819–25.PubMedCrossRefGoogle Scholar
  68. 68.
    Schaff HV. Asymptomatic severe mitral valve regurgitation: observation or operation? Circulation. 2009;119:768–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Magne J, Girerd N, Senechal M, et al. Mitral repair versus replacement for ischemic mitral regurgitation: comparison of short-term and long-term survival. Circulation. 2009;120:S104–11.PubMedCrossRefGoogle Scholar
  70. 70.
    Jones EC, Devereux RB, Roman MJ, et al. Prevalence and correlates of mitral regurgitation in a population-based sample (the Strong Heart Study). Am J Cardiol. 2001;87:298–304.PubMedCrossRefGoogle Scholar
  71. 71.
    Singh JP, Evans JC, Levy D, et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am J Cardiol. 1999;83:897–902.PubMedCrossRefGoogle Scholar
  72. 72.
    Rosen SE, Borer JS, Hochreiter C, et al. Natural history of the asymptomatic/minimally symptomatic patient with severe mitral regurgitation secondary to mitral valve prolapse and normal right and left ventricular performance. Am J Cardiol. 1994;74:374–80.PubMedCrossRefGoogle Scholar
  73. 73.
    Grigioni F, Tribouilloy C, Avierinos JF, et al. Outcomes in mitral regurgitation due to flail leaflets a multicenter European study. JACC Cardiovasc Imaging. 2008;1:133–41.PubMedCrossRefGoogle Scholar
  74. 74.
    Tribouilloy C, Grigioni F, Avierinos JF, et al. Survival implication of left ventricular end-systolic diameter in mitral regurgitation due to flail leaflets a long-term follow-up multicenter study. J Am Coll Cardiol. 2009;54:1961–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Javadikasgari H, Gillinov AM, Idrees JJ, et al. Valve repair is superior to replacement in most patients with coexisting degenerative mitral valve and coronary artery diseases. Ann Thorac Surg. 2017;103:1833–41.PubMedCrossRefGoogle Scholar
  76. 76.
    Mick SL, Keshavamurthy S, Gillinov AM. Mitral valve repair versus replacement. Ann Cardiothorac Surg. 2015;4:230–7.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Mohty D, Orszulak TA, Schaff HV, Avierinos JF, Tajik JA, Enriquez-Sarano M. Very long-term survival and durability of mitral valve repair for mitral valve prolapse. Circulation. 2001;104:I1–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Bolling SF, Li S, O’Brien SM, Brennan JM, Prager RL, Gammie JS. Predictors of mitral valve repair: clinical and surgeon factors. Ann Thorac Surg. 2010;90:1904–11; discussion 1912.PubMedCrossRefGoogle Scholar
  79. 79.
    Bonow RO, Adams DH. The time has come to define centers of excellence in mitral valve repair. J Am Coll Cardiol. 2016;67:499–501.PubMedCrossRefGoogle Scholar
  80. 80.
    Gammie JS, Zhao Y, Peterson ED, O’Brien SM, Rankin JS, Griffith BP. J. Maxwell Chamberlain Memorial Paper for adult cardiac surgery. Less-invasive mitral valve operations: trends and outcomes from the Society of Thoracic Surgeons Adult Cardiac Surgery Database. Ann Thorac Surg. 2010;90:1401–8, 1410.e1; discussion 1408–10.PubMedCrossRefGoogle Scholar
  81. 81.
    Dillon J, Yakub MA, Nordin MN, Pau KK, Krishna Moorthy PS. Leaflet extension in rheumatic mitral valve reconstruction. Eur J Cardiothorac Surg. 2013;44:682–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Maisano F, Torracca L, Oppizzi M, et al. The edge-to-edge technique: a simplified method to correct mitral insufficiency. Eur J Cardiothorac Surg. 1998;13:240–5; discussion 245–6.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Maisano F, Schreuder JJ, Oppizzi M, Fiorani B, Fino C, Alfieri O. The double-orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease: surgical technique. Eur J Cardiothorac Surg. 2000;17:201–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Milano CA, Daneshmand MA, Rankin JS, et al. Survival prognosis and surgical management of ischemic mitral regurgitation. Ann Thorac Surg. 2008;86:735–44.CrossRefGoogle Scholar
  85. 85.
    Micovic S, Milacic P, Otasevic P, et al. Comparison of valve annuloplasty and replacement for ischemic mitral valve incompetence. Heart Surg Forum. 2008;11:E340–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Silberman S, Oren A, Klutstein MW, et al. Does mitral valve intervention have an impact on late survival in ischemic cardiomyopathy? Isr Med Assoc J. 2006;8:17–20.PubMedGoogle Scholar
  87. 87.
    Thourani VH, Weintraub WS, Guyton RA, et al. Outcomes and long-term survival for patients undergoing mitral valve repair versus replacement: effect of age and concomitant coronary artery bypass grafting. Circulation. 2003;108:298–304.PubMedCrossRefGoogle Scholar
  88. 88.
    Vassileva CM, Boley T, Markwell S, Hazelrigg S. Meta-analysis of short-term and long-term survival following repair versus replacement for ischemic mitral regurgitation. Eur J Cardiothorac Surg. 2011;39:295–303.PubMedCrossRefGoogle Scholar
  89. 89.
    Gillinov AM, Wierup PN, Blackstone EH, et al. Is repair preferable to replacement for ischemic mitral regurgitation? J Thorac Cardiovasc Surg. 2001;122:1125–41.PubMedCrossRefGoogle Scholar
  90. 90.
    Reece TB, Tribble CG, Ellman PI, et al. Mitral repair is superior to replacement when associated with coronary artery disease. Ann Surg. 2004;239:671–5; discussion 675–7.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Al-Radi OO, Austin PC, Tu JV, David TE, Yau TM. Mitral repair versus replacement for ischemic mitral regurgitation. Ann Thorac Surg. 2005;79:1260–7; discussion 1260–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Acker MA, Parides MK, Perrault LP, et al. Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N Engl J Med. 2014;370:23–32.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kron IL, Hung J, Overbey JR, et al. Predicting recurrent mitral regurgitation after mitral valve repair for severe ischemic mitral regurgitation. J Thorac Cardiovasc Surg. 2015;149:752–761 e751.CrossRefGoogle Scholar
  94. 94.
    Gelsomino S, Lorusso R, De Cicco G, et al. Five-year echocardiographic results of combined undersized mitral ring annuloplasty and coronary artery bypass grafting for chronic ischaemic mitral regurgitation. Eur Heart J. 2008;29:231–40.CrossRefGoogle Scholar
  95. 95.
    Ciarka A, Braun J, Delgado V, et al. Predictors of mitral regurgitation recurrence in patients with heart failure undergoing mitral valve annuloplasty. Am J Cardiol. 2010;106:395–401.PubMedCrossRefGoogle Scholar
  96. 96.
    Magne J, Pibarot P, Dagenais F, Hachicha Z, Dumesnil JG, Senechal M. Preoperative posterior leaflet angle accurately predicts outcome after restrictive mitral valve annuloplasty for ischemic mitral regurgitation. Circulation. 2007;115:782–91.CrossRefGoogle Scholar
  97. 97.
    Kongsaerepong V, Shiota M, Gillinov AM, et al. Echocardiographic predictors of successful versus unsuccessful mitral valve repair in ischemic mitral regurgitation. Am J Cardiol. 2006;98:504–8.CrossRefGoogle Scholar
  98. 98.
    Roshanali F, Mandegar MH, Yousefnia MA, Rayatzadeh H, Alaeddini F. A prospective study of predicting factors in ischemic mitral regurgitation recurrence after ring annuloplasty. Ann Thorac Surg. 2007;84:745–9.CrossRefGoogle Scholar
  99. 99.
    Magne J, Senechal M, Dumesnil JG, Pibarot P. Ischemic mitral regurgitation: a complex multifaceted disease. Cardiology. 2009;112:244–59.CrossRefGoogle Scholar
  100. 100.
    De Bonis M, Lapenna E, Verzini A, et al. Recurrence of mitral regurgitation parallels the absence of left ventricular reverse remodeling after mitral repair in advanced dilated cardiomyopathy. Ann Thorac Surg. 2008;85:932–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Wijdh-den Hamer IJ, Bouma W, Lai EK, et al. The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty. J Thorac Cardiovasc Surg. 2016;152:847–59.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Bouma W, Lai EK, Levack MM, et al. Preoperative three-dimensional valve analysis predicts recurrent ischemic mitral regurgitation after mitral annuloplasty. Ann Thorac Surg. 2016;101:567–75; discussion 575.CrossRefGoogle Scholar
  103. 103.
    Levine RA, Schwammenthal E. Ischemic mitral regurgitation on the threshold of a solution: from paradoxes to unifying concepts. Circulation. 2005;112:745–58.CrossRefGoogle Scholar
  104. 104.
    Borger MA, Murphy PM, Alam A, et al. Initial results of the chordal-cutting operation for ischemic mitral regurgitation. J Thorac Cardiovasc Surg. 2007;133:1483–92.PubMedCrossRefGoogle Scholar
  105. 105.
    Kron IL, Green GR, Cope JT. Surgical relocation of the posterior papillary muscle in chronic ischemic mitral regurgitation. Ann Thorac Surg. 2002;74:600–1.CrossRefGoogle Scholar
  106. 106.
    Langer F, Rodriguez F, Ortiz S, et al. Subvalvular repair: the key to repairing ischemic mitral regurgitation? Circulation. 2005;112:I383–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Langer F, Schafers HJ. RING plus STRING: papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation. J Thorac Cardiovasc Surg. 2007;133:247–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Langer F, Groesdonk HV, Kunihara T, Schafers HJ. Dynamic RING + STRING for ischemic mitral regurgitation: papillary muscle repositioning and modification of the septal-lateral diameter in the loaded beating heart under echocardiographic guidance. J Thorac Cardiovasc Surg. 2011;141:1315–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Fattouch K, Castrovinci S, Murana G, et al. Papillary muscle relocation and mitral annuloplasty in ischemic mitral valve regurgitation: midterm results. J Thorac Cardiovasc Surg. 2014;148:1947–50.PubMedCrossRefGoogle Scholar
  110. 110.
    Hvass U, Tapia M, Baron F, Pouzet B, Shafy A. Papillary muscle sling: a new functional approach to mitral repair in patients with ischemic left ventricular dysfunction and functional mitral regurgitation. Ann Thorac Surg. 2003;75:809–11.PubMedCrossRefGoogle Scholar
  111. 111.
    Benjo AM, Macedo FY, Santana O, Lamelas J. Papillary muscle sling placement for functional mitral regurgitation during minimally invasive valve surgery. Innovations (Phila). 2012;7:448–51.CrossRefGoogle Scholar
  112. 112.
    Santana O, Solenkova NV, Pineda AM, Mihos CG, Lamelas J. Minimally invasive papillary muscle sling placement during mitral valve repair in patients with functional mitral regurgitation. J Thorac Cardiovasc Surg. 2014;147:496–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Nappi F, Lusini M, Spadaccio C, et al. Papillary muscle approximation versus restrictive annuloplasty alone for severe ischemic mitral regurgitation. J Am Coll Cardiol. 2016;67:2334–46.CrossRefGoogle Scholar
  114. 114.
    Mandegar MH, Saidi B, Yousefnia MA, Alaeddini F, Roshanali F. Long-term effect of papillary muscle approximation combined with ventriculoplasty on left ventricle function in patients with ischemic cardiomyopathy and functional mitral regurgitation. Eur J Cardiothorac Surg. 2011;40:756–60.PubMedGoogle Scholar
  115. 115.
    Athanasuleas CL, Buckberg GD, Stanley AW, et al. Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation. J Am Coll Cardiol. 2004;44:1439–45.PubMedCrossRefGoogle Scholar
  116. 116.
    Athanasuleas CL, Stanley AW Jr, Buckberg GD. Restoration of contractile function in the enlarged left ventricle by exclusion of remodeled akinetic anterior segment: surgical strategy, myocardial protection, and angiographic results. J Card Surg. 1998;13:418–28.PubMedCrossRefGoogle Scholar
  117. 117.
    Jones RH, Velazquez EJ, Michler RE, et al. Coronary bypass surgery with or without surgical ventricular reconstruction. N Engl J Med. 2009;360:1705–17.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wakasa S, Shingu Y, Ooka T, Katoh H, Tachibana T, Matsui Y. Surgical strategy for ischemic mitral regurgitation adopting subvalvular and ventricular procedures. Ann Thorac Cardiovasc Surg. 2015;21:370–7.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Enriquez-Sarano M, Schaff HV, Orszulak TA, Tajik AJ, Bailey KR, Frye RL. Valve repair improves the outcome of surgery for mitral regurgitation. A multivariate analysis. Circulation. 1995;91:1022–8.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Gammie JS, O’Brien SM, Griffith BP, Ferguson TB, Peterson ED. Influence of hospital procedural volume on care process and mortality for patients undergoing elective surgery for mitral regurgitation. Circulation. 2007;115:881–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Bonow RO, Carabello BA, Chatterjee K, et al. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease). J Am Coll Cardiol. 2008;52:e1–142.PubMedCrossRefGoogle Scholar
  122. 122.
    Maisano F, Taramasso M, Nickenig G, et al. Cardioband, a transcatheter surgical-like direct mitral valve annuloplasty system: early results of the feasibility trial. Eur Heart J. 2016;37:817–25.PubMedCrossRefGoogle Scholar
  123. 123.
    Sharma R, Gafoor S. Percutaneous mitral valve repair: the next wave. Card Interv Today. 2017;11:65–70.Google Scholar
  124. 124.
    Goldberg SL, Lipiecki J, Sievert H. The CARILLON Mitral Contour transcatheter indirect mitral valve annuloplasty system. EuroIntervention. 2015;11(Suppl W):W64–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Erglis A, Thomas M, Morice MC, et al. The Arto transcatheter mitral valve repair system. EuroIntervention. 2015;11(Suppl W):W47–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Bapat V, Buellesfeld L, Peterson MD, et al. Transcatheter mitral valve implantation (TMVI) using the Edwards FORTIS device. EuroIntervention. 2014;10(Suppl U):U120–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Bapat V, Lim ZY, Boix R, Pirone F. The Edwards Fortis transcatheter mitral valve implantation system. EuroIntervention. 2015;11(Suppl W):W73–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Verheye S, Cheung A, Leon M, Banai S. The Tiara transcatheter mitral valve implantation system. EuroIntervention. 2015;11(Suppl W):W71–2.PubMedCrossRefGoogle Scholar
  129. 129.
    Regueiro A, Granada JF, Dagenais F, Rodes-Cabau J. Transcatheter mitral valve replacement: insights from early clinical experience and future challenges. J Am Coll Cardiol. 2017;69:2175–92.PubMedCrossRefGoogle Scholar
  130. 130.
    Sondergaard L, Ussia GP, Dumonteil N, Quadri A. The CardiAQ transcatheter mitral valve implantation system. EuroIntervention. 2015;11(Suppl W):W76–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Perpetua EM, Reisman M. The Tendyne transcatheter mitral valve implantation system. EuroIntervention. 2015;11(Suppl W):W78–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Navia JL, Baeza C, Maluenda G, et al. Transcatheter mitral valve replacement with the NaviGate stent in a preclinical model. EuroIntervention. 2017;13:e1401–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Barbanti M, Piazza N, Mangiafico S, et al. Transcatheter mitral valve implantation using the HighLife system. JACC Cardiovasc Interv. 2017;10:1662–70.PubMedCrossRefGoogle Scholar
  134. 134.
    Meredith I, Bapat V, Morriss J, McLean M, Prendergast B. Intrepid transcatheter mitral valve replacement system: technical and product description. EuroIntervention. 2016;12:Y78–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  • Joseph Lamelas
    • 1
    • 2
  • Corinne M. Aberle
    • 3
  • Swaminadhan Gnanashanmugam
    • 3
  1. 1.Division of Cardiac SurgeryCHI St. Luke’s Health—Baylor St. Luke’s Medical CenterHoustonUSA
  2. 2.Department of Cardiovascular SurgeryTexas Heart InstituteHoustonUSA
  3. 3.Cardiothoracic SurgeryTexas Heart Institute—Baylor College of MedicineHoustonUSA

Personalised recommendations