Latent Variables, Topographic Mappings and Data Visualization

  • Christopher M. Bishop
Conference paper

DOI: 10.1007/978-1-4471-1520-5_1

Part of the Perspectives in Neural Computing book series (PERSPECT.NEURAL)
Cite this paper as:
Bishop C.M. (1998) Latent Variables, Topographic Mappings and Data Visualization. In: Marinaro M., Tagliaferri R. (eds) Neural Nets WIRN VIETRI-97. Perspectives in Neural Computing. Springer, London


Most pattern recognition tasks, such as regression, classification and novelty detection, can be viewed in terms of probability density estimation. A powerful approach to probabilistic modelling is to represent the observed variables in terms of a number of hidden, or latent, variables. One well-known example of a hidden variable model is the mixture distribution in which the hidden variable is the discrete component label. In the case of continuous latent variables we obtain models such as factor analysis. In this paper we provide an overview of latent variable models, and we show how a particular form of linear latent variable model can be used to provide a probabilistic formulation of the well-known technique of principal components analysis (PCA). By extending this technique to mixtures, and hierarchical mixtures, of probabilistic PCA models we are led to a powerful interactive algorithm for data visualization. We also show how the probabilistic PCA approach can be generalized to non-linear latent variable models leading to the Generative Topographic Mapping algorithm (GTM). Finally, we show how GTM can itself be extended to model temporal data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • Christopher M. Bishop
    • 1
  1. 1.Neural Computing Research Group, Dept. of Computer Science and Applied MathematicsAston UniversityBirminghamUK

Personalised recommendations