Genetic Engineering of Milk Proteins

  • J. Leaver
  • A. J. R. Law


Changes in the productivity, composition or appearance of plants and animals have, traditionally, been achieved by means of selective breeding, drawing upon naturally occurring variations within the gene pool of a species. Many commercial plant species such as cereals and members of the brassica family bear very little resemblance to their ancestral forms and their productivity is very substantially higher. Changes achieved with domesticated animals are less dramatic but, in conjunction with improved animal husbandry, selective breeding has been so successful in increasing the milk yield of dairy cattle that within the European Union, quotas have had to be imposed in order to limit surpluses. By the use of artificial insemination and embryo transplants, an individual bull with the desired characteristics can produce thousands of offspring.


Transgenic Mouse Mammary Gland Milk Protein Therapeutic Protein Whey Acidic Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baguisi, A., Behboodi, E., Melican, D.T., Pollock, J.S., Destrempes, M.M., Cammuso, C., Williams, J.L., Nims, S.D., Porter, C.A., Midura, P., Palacios, M.J., Ayres, S.L., Denniston, R.S., Hayes, M.L., Ziomek, C.A., Meade, H.M., Godke, R.A., Gavin, W.G., Overstrom, E.W. and Echelard, Y. (dy1999) Production of goats by somatic cell nuclear transfer. Nat. Biotechnol., 17, 456–61.CrossRefGoogle Scholar
  2. 1.Batt
    C.A. (1997) Genetic engineering of food proteins. In Food Proteins and Their Applications, (S. Damodoran and A. Paraf ed.) Marcel Dekker Inc, New York, pp. 425–41.Google Scholar
  3. Batt, C.A., Rabson, L.D., Wong, D.W.S. and Kinsella, J.E. (1990) Expression of recombinant bovine β-lactoglobulin in Escherichia coli. Agric. Biol. Chem., 54, 949–55.CrossRefGoogle Scholar
  4. Bleck, G.T. and Bremel, R.D. (1994) Variation in the expression of a bovine α-lactalbumin transgene in milk of transgenic mice. J. Dairy Sci., 77, 1897–904.CrossRefGoogle Scholar
  5. Bleck, G.T, Jiminez-Flores, R. and Bremel, R.D. (1995) Abnormal properties of milk from transgenic mice expressing bovine β-casein under the control of the bovine α-lactalbumin 5′-flanking region. Int. Dairy J., 5, 619–32.CrossRefGoogle Scholar
  6. Bleck, G.T., White, B.R., Miller, D.J. and Wheeler, M.B. (1998) Production of bovine α-lactalbumin in the milk of transgenic pigs. J. Anim. Sci., 76, 3072–8.Google Scholar
  7. Brem, G., Hartl, P., Besenfelder, U., Wolf, E., Zinovieva, N. and Pfaller, R. (1994) Expression of synthetic cDNA sequences encoding human-insulin-like growth-factor-I (IGF-1) in the mammary-gland of transgenic rabbits. Gene, 149, 351–5.CrossRefGoogle Scholar
  8. Burrin, D.G., Fiorotto, M.L. and Hadsell, D.L. (1999) Transgenic hypersécrétion of des(1-3) human insulin-like growth factor I in mouse milk has limited effects on the gastrointestinal tract in suckling pups. J. Nutr., 129, 51–6.Google Scholar
  9. Carver, A.S., Dalrymple, M.A., Wright, G., Cottom, D.S, Reeves, D.B., Gibson, Y.H., Keenan, J.L., Barrass, J.D., Scott, A.R., Colman, A. and Garner, I. (1993) Transgenic livestock as bioreactors: Stable expression of human alpha-1-antitrypsin by a flock of sheep. Bio/ Technology, 11, 1263–70.CrossRefGoogle Scholar
  10. Castilla, J., Pintado, B., Sola, I., Sanchez-Morgado, J.M. and Enjuanes, L. (1998) Engineering passive immunity in transgenic mice secreting virus-neutralizing antibodies in milk. Nat. Biotechnol., 16, 349–54.CrossRefGoogle Scholar
  11. Cho, Y., Gu, W., Watkins, S., Lee, S-P, Kim, T-R., Brady, J.W. and Batt, C.A. (1994) Thermostable variants of bovine β-lactoglobulin. Protein Eng., 7, 263–70.CrossRefGoogle Scholar
  12. Chaudhuri, T.K., Horii, K., Yoda, T., Arai, M., Nagata, S., Terada, T.P., Uchiyama, H., Ikura, T., Tsumoto, K., Kataoka, H., Matsushima, M., Kuwajima, K. and Kumagai, I. (1999) Effect of extra-N-terminal methionine residue on the stability and folding of recombinant α-lactalbumin expressed in Escherichia coli. J. Mol. Biol., 285, 1179–94.CrossRefGoogle Scholar
  13. Clark, A.J. (1998) The mammary gland as a bioreactor: Expression, processing, and production of recombinant proteins. J. Mammary Gland Biol., 3, 337–50.CrossRefGoogle Scholar
  14. Colman, A. (1996) Production of proteins in the milk of transgenic livestock: problems, solutions and successes. Am. J. Clin. Nutr., 63, 639S.Google Scholar
  15. Devinoy, E., Thepot, D., Stinnakre, M.G., Fontaine, M.L., Grabowski, H., Puissant C., Pavirani, A. and Houdebine, L.M. (1994) High-level production of human growth hormone in the milk of transgenic mice — The upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Res., 3, 79–89.CrossRefGoogle Scholar
  16. DiTullio, P., Cheng, S.H., Marshall, J., Gregory, R.J., Ebert, K.M., Meade, H.M. and Smith, A.E. (1992) Production of cystic-fibrosis transmembrane regulator in the milk of transgenic mice. Bio/Technology, 10, 74–7.CrossRefGoogle Scholar
  17. Drobovolsky, V.N., Lagutin, O.V., Vinagradova, T.V., Frolova, I.S., Kuznetsov, V.P. and Larionov, O.A. (1993) Human gamma-interferon expression in the mammary-gland of transgenic mice. FEBS Lett., 319, 181–4.CrossRefGoogle Scholar
  18. Drohan, W.N., Zhang, D.W., Paleyanda, R.K., Chang, R.L., Wroble, M., Velander, W. and Lubon, H. (1994) Inefficient processing of human protein-C in the mouse mammary-gland. Transgenic Res., 3, 355–65.CrossRefGoogle Scholar
  19. Greenberg, N.M., Anderson, J.W., Hsueh, A.J.W., Nishimori, K., Reeves, J.J., Deavila, D.M., Ward, D.N. and Rosen, J.M. (1991) Expression of biologically-active heterodimeric bovine follicle-stimulating-hormone in milk of transgenic mice. Proc. Natl. Acad. Sci. USA, 88, 8327–31.CrossRefGoogle Scholar
  20. Guitierrez-Adan, A., Maga. E.A., Meade, H., Shoemaker, C.F., Medrano, J.F., Anderson, G.B. and Murray, J.D. (1996) Alterations in the physical characteristics milk from transgenic mice producing bovineκ-casein. J. Dairy Sci., 79, 791–9.CrossRefGoogle Scholar
  21. Hansson, L., Bergstrom, S., Heraell, O., Lonnerdal, B., Nilson, A.K. and Stromqvist, M. (1993) Expression of human milk β-casein in Escherichia coli- comparison of recombinant protein with native isoforms. Protein Expres. Purif., 4, 373–81.CrossRefGoogle Scholar
  22. Hansson, L., Edlund, M., Edlund, A., Johansson, T., Marklund, S.L., Fromm, S., Stromqvist, M. and Torneil, J. (1994) Expression and characterization of biologically-active human extracellular-superoxide dismutase in milk of transgenic mice. J. Biol. Chem., 269, 5358–63.Google Scholar
  23. Hitchin, E., Stevenson, E.M., Clark, A.J., McClenaghan, M. and Leaver, J. (1996) Bovine β-casein expressed in transgenic mouse milk is phosphorylated and incorporated into micelles. Protein Expres. Purif., 7, 247–52.CrossRefGoogle Scholar
  24. Houdebine, L-M. (1994) Production of pharmaceutical proteins from transgenic animals. J. Biotechnol., 34, 269–87.CrossRefGoogle Scholar
  25. Hurwitz, D.R., Nathan, M., Barash, I., Ilan, H. and Shani, M. (1994) Specific combinations of human serum-albumin introns direct high-level expression of albumin in transfected cos cells and in the milk of transgenic mice. Transgenic Res., 3, 365–75.CrossRefGoogle Scholar
  26. Ishikawa, N., Chiba, T., Len, L.T., Shimizu, A., Ikeguchi, M. and Sugai, S. (1998) Remarkable destabilization of recombinant α-lactalbumin by an extraneous N-terminal methionyl residue. Protein Eng., 11, 333–5.CrossRefGoogle Scholar
  27. Jeng, S-Y., Bleck, G.T., Wheeler, M.B. and Jiminez-Flores, R. (1997) Characterization and partial purification of bovine α-lactalbumin and β-casein produced in milk of transgenic mice. J. Dairy Sci., 80, 3167–75.CrossRefGoogle Scholar
  28. Jost, B., Vilotte, J.-L., Duluc, T., Rodeau, J.-L. and Freund, J.-N. (1999) Production of low-lactose milk by ectotopic expression of intestinal lactase in the mouse mammary gland. Nat. Biotechnol., 17, 160–4.CrossRefGoogle Scholar
  29. Jiminez-Flores, R., Richardson, T. and Bisson, L.F. (1990) Expression of bovine β-casein in Saccharomyces cerevisiae and characterization of the protein produced in vivo. J. Agric. Food Chem., 38, 1134–41.CrossRefGoogle Scholar
  30. Karatzas, C.N. and Turner, J.D. (1997) Toward altering milk composition by genetic manipulation: Current status and challenges. J. Dairy Sci., 80, 2225–32.CrossRefGoogle Scholar
  31. Korhonen, V.-P., Tolvanen, M., Hyttinen, J.-M., Uusi-Oukari, M., Sinervirta, R., Alhonen, L., Jauhiainen, M., Janne, O.A. and Janne, J. (1997) Expression of bovine β-lactoglobulin/human erythropoietin fusion protein in the milk of transgenic mice and rabbits. Eur. J. Biochem., 245, 482–9.CrossRefGoogle Scholar
  32. Kumar, S., Clarke, A.R., Hooper, M.L., Home, D.S., Law, A.J.R., Leaver, J., Springbett, A., Stevenson, E. and Simons, J.P. (1994) Milk-composition and lactation of β-casein-deficient mice. Proc. Natl. Acad. Sci. USA, 91, 6138–42.CrossRefGoogle Scholar
  33. Lo, C.W. and Kleinman, R.E. (1996) Infant formula, past and future: opportunities for improvement. Am. J. Clin. Nutr., 63, 646S–50S.Google Scholar
  34. Lee, S.H. and de Boer, H.A. (1994) Production of biomedical proteins in the milk of transgenic dairy cows: the state of the art. J. Control. Release, 29, 213–21.CrossRefGoogle Scholar
  35. Lee, S-P., Kim, D-S., Watkins, S. and Batt, C.A. (1994) Reducing whey syneresis in yoghurt by the addition of a thermolabile variant of β-lactoglobulin. Biosci. Biotech. Biochem., 58, 309–13.CrossRefGoogle Scholar
  36. Lee, T.K., Drohan, W.N. and Lubon, H. (1995) Proteolytic processing of human Protein C in swine mammary gland. J. Biochem., 118, 81–7.Google Scholar
  37. Liang, Q.W. and Richardson, T. (1993) Expression and characterization of human lactoferrin in yeast Saccharomyces cerevisiae. J. Agric. Food Chem., 41, 1800–7.CrossRefGoogle Scholar
  38. Limonta, J., Pedraza, A., Rodriguez, A., Freyre, F.M., Barrai, A.M., Castro, F.O., Lleonart, R., Gracia, C.A., Gavilondo, J.V. and Delafuente, J. (1995) Production of active anti-CD6 mouse-human chimeric antibodies in the milk of transgenic mice. Immunotechnol., 1, 107–13.CrossRefGoogle Scholar
  39. Limonta, J.M., Castro, F.O., Martinez, R., Puentes, P., Ramos, B., Aguilar, A., Lleonart, R.L. and Delafuente, J. (1995) Transgenic rabbits as bioreactors for the production of human growth-hormone. J. Biotechnol., 40, 49–58.CrossRefGoogle Scholar
  40. McClenaghan, M., Springbett, A., Wallace, R.M., Wilde, C.J. and Clark, A.J. (1995) Secretory proteins compete for production in the mammary-gland of transgenic mice. Biochem. J., 310, 637–41.Google Scholar
  41. McClenaghan, M., Hitchin, E., Stevenson, E.M., Clark, A.J., Holt, C. and Leaver, J. (1999) Insertion of a casein kinase recognition sequence induces phosphorylation of ovine β-lactoglobulin in transgenic mice. Protein Eng., 12, 259–64.CrossRefGoogle Scholar
  42. Murray, J.D. (1999) Genetic modification of animals in the next century. Theriogenol., 51, 149–59.CrossRefGoogle Scholar
  43. Ninomiya, T., Hirabayashi, M., Sagara, J. and Yuki, A. (1994) Functions of milk protein gene 5′-flanking regions on human growth-hormone gene. Mol. Reprod. Dev., 37, 276–83.CrossRefGoogle Scholar
  44. Nuijens, J.H., van Berkel, H.C., Geerts, M.E.J., Hartevelt, P.P., de Boer, H.A., van Veen, H.A. and Pieper, F.R. (1997) Characterization of recombinant human lactoferrin secreted in milk of transgenic mice. J. Biol. Chem., 272, 8802–7.CrossRefGoogle Scholar
  45. Oh, S. and Richardson, T. (1991a) Genetic-engineering of bovineκ-casein to improve its nutritional quality. J. Agric. Food Chem., 39, 422–7.CrossRefGoogle Scholar
  46. Oh, S. and Richardson, T. (1991b) Genetic-engineering of bovineκ-casein to enhance proteolysis by chymosin. ACS Symposium Series, 454, 195–211.CrossRefGoogle Scholar
  47. Paleyanda, R.K., Velander, W.H., Lee, T.K., Scandella, D.H., Gwazdauskas, F.C., Knight, J.W., Hoyer, L.W., Drohan, W.N. and Lubon, H. (1997) Transgenic pigs produce functional human factor VIII in milk. Nat. Biotechnol., 15, 971–5.CrossRefGoogle Scholar
  48. Paleyanda, R.K., Drews, R., Lee, T.K. and Lubon, H. (1997) Secretion of human furin into mouse milk. J. Biol. Chem., 272, 15270–4.CrossRefGoogle Scholar
  49. Persuy, M.A., Stinnakre, M.G., Printz, C., Mahe, M.F. and Mercier J.C. (1992) High expression of the caprine β-casein gene in transgenic mice. Eur. J. Biochem., 205, 887–93.CrossRefGoogle Scholar
  50. Persuy, M.A., Legrain, S., Printz, C., Stinnakre, M.G., Lepourry, L., Brignon, G. and Mercier, J.C. (1995) High-stage and mammary-tissue-specific expression of a caprineκ-casein-encoding minigene driven by a β-casein promoter in transgenic mice. Gene, 165, 291–6.CrossRefGoogle Scholar
  51. Platenburg, G.J., Koowijk, E.P.A., Kooiman, P.M., Woloshuk, S.L., Nuijens, J.H., Krimpenfort, P.J.A., Pieper, F.R., de Boer, H.A. and Strijker, R. (1994) Expression of human lactoferrin in milk of transgenic mice. Transgenic Res., 3, 99–108.CrossRefGoogle Scholar
  52. Prieto, P.A., Mukerji, P., Kelder, B., Erney, R., Gozalez, D., Yun, J.S., Smith, D.F., Moremen, K.W., Mardelli, C., Pierce, M., Li, Y.S., Chen, X., Wagner, T.E., Cummings R.D. and Kopchick, J.J. (1995) Remodelling of mouse milk glycoconjugates by transgenic expression of a human glycosyltransferase. J. Biol. Chem., 270, 29515–9.CrossRefGoogle Scholar
  53. Prunkard, D., Cottingham, I., Garner, I., Bruce, S., Dalrymple, M., Lasser, G., Bishop, P. and Foster, D. (1996) High-level expression of recombinant human fibrinogen in the milk of transgenic mice. Nat. Biotechnol., A4, 867–71.CrossRefGoogle Scholar
  54. Riego, E., Limonta, J., Aguilar, A., Perez, A., Dearmas, R., Solano, R., Ramos, B., Castro, F.O. and Delafuente, J. (1993) Production of transgenic mice and rabbits that carry and express the human tissue plasminogen-activator cDNA under the control of a bovine αs1-casein promoter. Theriogenol., 39, 1173–85.CrossRefGoogle Scholar
  55. Rijnkels, M., Kooiman, P.M., Platenburg, G.J., van Dixhoorn, M., Nuijens, J.H., de Boer, H.A. and Pieper, F.R. (1997) High-level expression of bovine αs1-casein in milk of transgenic mice. Transgenic Res., 7, 5–14.CrossRefGoogle Scholar
  56. Rocha, T.L., Paterson, G., Crimmins, K., Boyd, A., Sawyer, L. and Fothergill-Gilmore, L.A. (1996) Expression and secretion of recombinant ovine β-lactoglobulin in Saccharomyces cerevisiae and Kluyveromyces lactis. Biochem. J., 313, 927–32.Google Scholar
  57. Rokkones, E., Fromm, S.H., Kareem, B.M., Klungland, H., Olstad, O.K., Hogset, A., Iversen, J., Bjoro, K. and Gautvik, K.M. (1995) Human parathyroid hormone as a secretory peptide in milk of transgenic mice. J. Cell. Biochem., 59, 168–76.CrossRefGoogle Scholar
  58. Salmon, V., Legrand, D., Georges, B., Slomianny, M.-C., Coddeville, B. and Spik, G. (1997) Characterization of human lactoferrin produced in the baculovirus expression system. Protein Expres. Purif., 9, 203–10.CrossRefGoogle Scholar
  59. Schnieke, A.E., Kind, A.J., Ritchie, W.A., Mycock, K., Scott, A.R., Ritchie, M., Wilmut, I., Colman, A. and Campbell, K.H.S. (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 278, 2130–3.CrossRefGoogle Scholar
  60. Shamay, A., Solinas, S., Pursel, V.G., McKnight, R.A., Alexander, L., Beattie, C., Hennighausen, L. and Wall, R.J. (1991) Production of the mouse whey acidic protein in transgenic pigs. J. Anim. Sci., 69, 4552–62.Google Scholar
  61. Shani, M., Barash, I., Nathan, M., Ricca, G., Searfoss, G.H., Dekel, I., Faerman, A., Givol, D. and Hurwitz, D.R. (1992) Expression of human serum albumin in the milk of transgenic mice. Transgenic Res., 1, 195–208.CrossRefGoogle Scholar
  62. Simons, J.P., McClenaghan, M. and Clark, A.J. (1987) Alteration of the quality of milk by expression of sheep β-lactoglobulin gene in transgenic mice. Nature, 328, 530–2.CrossRefGoogle Scholar
  63. Simons, G., van den Heuvel, W., Reynen, T., Frijters, A., Rutten, G., Slangen, C.J., Groenen, M., de Vos, W.M. and Siezen, R.J. (1993) Overproduction of bovine β-casein in Escherichia coli and engineering of its main chymosin cleavage site. Protein Eng., 6, 763–70.CrossRefGoogle Scholar
  64. Sitaram, M.P., Moloney, B. and McAbee, D.D. (1998) Prokaryotic expression of bovine lactoferrin deletion mutants that bind to the Ca2+-dependent lactoferrin receptor on isolated rat hepatocytes. Protein Expres. Purif., 14, 229–36.CrossRefGoogle Scholar
  65. Stacey, A., Schnieke, A., Kerr, M., Scott, A., McKee, C., Cottingham, I., Binas, B., Wilde, C. and Colman A. (1995) Lactation is disrupted by α-lactalbumin deficiency and can be restored by human α-lactalbumin gene replacement in mice. Proc. Natl. Acad. Sci. USA, 92, 2835–9.CrossRefGoogle Scholar
  66. Stinnakre, M.G., Vilotte, J.L., Soulier, S., Lharidon, R., Charlier, M., Gaye, P. and Mercier, J.C. (1991) The bovine α-lactalbumin promoter directs expression of ovine trophoblast interferon in the mammary-gland of transgenic mice. FEBS Lett., 284, 19–22.CrossRefGoogle Scholar
  67. Stinnakre, M.G., Devinoy, E., Thepot, D., Chene, N., Bayatsamardi, M., Grabowski, H. and Houdebine, L.M. (1993) The synthesis of a recombinant protein in the milk of transgenic mice. Livest. Prod. Sci., 36, 35–8.CrossRefGoogle Scholar
  68. Stinnakre, M.G., Vilotte, J.L., Soulier, S. and Mercier, J.C. (1994) Creation and phenotypic analysis of α-lactalbumin-deficient mice. Proc. Natl. Acad. Sci. USA, 91, 6544–8.CrossRefGoogle Scholar
  69. Stromqvist, M., Tornell, J., Edlund, M., Edlund, A., Johansson, T., Lindgren, K., Lundberg, L. and Hansson, L. (1996) Recombinant human bile salt-stimulated lipase: an example of defective O-glycosylation of a protein produced in milk of transgenic mice. Transgenic Res., 5, 475–85.CrossRefGoogle Scholar
  70. Stromqvist, M., Houdebine, L.-M., Andersson, J.-O., Edlund, A., Johansson, T., Viglietta, C., Puissant, C. and Hansson, L. (1997) Recombinant human extracellular Superoxide dismutase produced in milk of transgenic rabbits. Transgenic Res., 6, 271–8.CrossRefGoogle Scholar
  71. Thepot, D., Devinoy, E., Fontaine, M.L., Stinnakre, M.G., Massoud, M., Kann, G. and Houdebine, L.M. (1995) Rabbit whey acidic protein gene upstream region controls high-level expression of bovine growth hormone in the mammary-gland of transgenic mice. Mol. Reprod. Dev., 42, 261–7.CrossRefGoogle Scholar
  72. Thurmond, J.M., Hards, R.G., Seipelt, C.T., Leonard, A.E., Hansson, L., Stromqvist, M., Bystrom, M., Enquist, K., Xu, B.X.C., Kopchick, J.J. and Mukerji, P. (1997) Expression and characterization of phosphorylated recombinant human β-casein in Escherichia coli. Protein Expres. Purif., 10, 202–8.CrossRefGoogle Scholar
  73. Totsuka, M., Katakura, Y., Shimizu, M., Kumagai, I., Miura, K. and Kaminogawa, S. (1990) Expression and secretion of bovine β-lactoglobulin in Saccharomyces cerevisiae. Agric. Biol. Chem., 54, 3111–6.CrossRefGoogle Scholar
  74. Velander, W.H., Johnson, J.L., Page, R.L., Russell, C.G., Subramanian, A., Wilkins, T.D., Gwasdaukas, F.C., Pittius, C. and Drohan, W.N. (1992) High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA-encoding human protein-C Proc. Natl. Acad. Sci. USA, 89, 12003–7.CrossRefGoogle Scholar
  75. Wall, R.J., Rexroad, C.E., Powell, A., Shamay, A., McKnight, R. and Hennighausen, L. (1996) Synthesis and secretion of the mouse whey acidic protein in transgenic sheep. Transgenic Res., 5, 67–72.CrossRefGoogle Scholar
  76. Wall, R.J., Kerr, D.E. and Bondioli, K.R. (1997) Transgenic dairy cattle: Genetic engineering on a large scale. J. Dairy Sci., 80, 2213–24.CrossRefGoogle Scholar
  77. Woolliams, J.A. and Wilmut, I. (1999) New advances in cloning and their potential impact on genetic variation in livestock. Anim. Sci., 68, 245–56.Google Scholar
  78. Yull, F., Harold, G., Cowper, A., Percy, J., Cottingham, I. and Clark, A.J. (1995) Fixing human factor IX (fIX): Correction of a cryptic RNA splice enables the production of biologically active human factor IX in the mammary gland. Proc. Natl. Acad. Sci. USA, 92, 10899–903.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • J. Leaver
  • A. J. R. Law

There are no affiliations available

Personalised recommendations