Advertisement

# The Order of the Remainder in Derivatives of Composition and Inverse Operators for p-Variation Norms

• R. M. Dudley
Chapter
Part of the Selected Works in Probability and Statistics book series (SWPS)

## Abstract

The theory of differentiable statisticals began with work of von Mises [e.g., von Mises (1936, 1947) and Filippova (1961)]. A nonlinear funtional T is defined, for examble, on distribution functions.Von Mises differentiated T at a distribution funtion F along lines. For T to have a (Gâteaux) derivative at F means that, in the direction of a function h,
$$T(F + th) = T(f) + tT^\prime(F)(h) + 0 (|t|) \quad {\rm as} \; t\rightarrow 0.$$
(1.1)
Here $$T^\prime(F)(.)$$ is a bounded linear operator on funtions h, for example, of the form
$$T^\prime(F) (h) = \int g \quad dh \hbox{for some function} g (\hbox{depending on} F).$$
(1.2)

## Key words and phrases

Fréchet derivative compact derivativ Hadamard derivative Gâteaux derivative Bahadur–Kiefer theorems Orlicz variation

## Preview

Unable to display preview. Download preview PDF.

## References

1. Appell, J. and Zabrejko, P. P. (1990). Nonlinear Superposition Operators. Cambridge Univ. Press.
2. Bahadur, R. R. (1966). A note on quantiles in large samples. Ann. Math. Statist. 37 577–580.
3. Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993). Estimation for Semiparametric Models. Johns Hopkins Univ. Press.
4. Brokate, M. and Colonius, F. (1990). Linearizing equations with state-dependent delays. Appl. Math. Optim. 21 45–52.
5. Csörgő, M. and Révész, P. (1978). Strong approximations of the quantile process. Ann. Statist. 6 882–894.
6. Deheuvels, P. and Mason, D. M. (1990). Bahadur–Kiefer–type processes. Ann. Probab. 18 669–697.
7. Dollard, J. D. and Friedman, C. N. (1979). Product Integration with Applications to Differential Equations. Addison-Wesley, Reading, MA.
8. Dudley, R. M. (1989). Real Analysis and Probability. Wadsworth and Brooks/Cole, Pacific Grove, CA.
9. Dudley, R. M. (1991). Differentiability of the composition and inverse operators for regulated and a.e. continuous functions. Unpublished manuscript.Google Scholar
10. Dudley, R. M. (1992a). Fréchet differentiability, p-variation and uniform Donsker classes. Ann. Probab. 20 1968–1982.
11. Dudley, R. M. (1992b). Empirical processes: p-variation for p ≤ 2 and the quantile-quantile and $$\int F \ dG$$ operators. Unpublished manuscript.Google Scholar
12. Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1956). Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Statist. 27 642–669.
13. Esty, W., Gillette, R., Hamilton, M. and Taylor, D. (1985). Asymptotic distribution theory of statistical functionals. Ann. Inst. Statist. Math. 37 109–129.
14. Fernholz, L. T. (1983). Von Mises Calculus for Statistical Functionals. Lecture Notes in Statist. 19. Springer, New York.Google Scholar
15. Filippova, A. (1961). Mises’ theorem on the asymptotic behavior of functionals of empirical distribution functions and its statistical applications. Theory Probab. Appl. 7 24–57.
16. Freedman, M. A. (1983). Operators of p-variation and the evolution representation problem. Trans. Amer. Math. Soc. 279 95–112.
17. Gill, R. D. (1989). Non- and semi-parametric maximum likelihood estimators and the von Mises method (Part 1). Scand. J. Statist. 16 97–128.
18. Gill, R. D. and Johansen, S. (1990). A survey of product-integration with a view toward application in survival analysis. Ann. Statist. 18 1501–1555.
19. Gray, A. (1975). Differentiation of composites with respect to a parameter. J. Austral. Math. Soc. Ser. A 19 121–128.
20. Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. Wiley, New York.
21. Holt, R. J. (1986). Computation of gamma and beta tail probabilities. Technical report, Dept. Mathematics, MIT.Google Scholar
22. Huber, P J. (1981). Robust Statistics. Wiley, New York.
23. Kendall, M. G. and Stuart, A. (1977). The Advanced Theory of Statistics 1 . Distribution Theory, 4th ed. Macmillan, New York.
24. Kiefer, J. (1967). On Bahadur’s representation of sample quantiles. Ann. Math. Statist. 38 1323–1342.
25. Kiefer, J. (1970). Deviations between the sample quantile process and the sample df. In Non-parametric Techniques in Statistical Inference (M. L. Puri, ed.) 299–319. Cambridge Univ. Press.Google Scholar
26. Krabbe, G. L. (1961). Integration with respect to operator-valued functions. Bull. Amer. Math. Soc. 67 214–218.
27. Krasnosel’skii, M.A. and Rutickii, Ya. B. (1961). Convex Functions and Orlicz Spaces. Noordhoff, Groningen. (Translated by L. F. Boron.)Google Scholar
28. Lepingle, D. (1976). La variation d’ordre p des semi-martingales. Z. Wahrsch. Verw. Gebiete 36 295–316.
29. Molenaar, W. (1970). Approximations to the Poisson, Binomial and Hypergeometric Distribution Functions. Math. Centrum, Amsterdam.
30. Monroe, I. (1972). On embedding right continuous martingales in Brownian motion. Ann. Math. Statist. 43 1293–1311.
31. Monroe, I. (1976). Almost sure convergence of the quadratic variation of martingales: A counterexample. Ann. Probab. 4 133–138.
32. Musielak, J. and Orlicz, W. (1959). On generalized variations (I). Studia Math. 18 11–41.
33. Pratt, J. W. (1968). A normal approximation for binomial, F, beta, and other common, related tail probabilities II. J. Amer. Statist. Assoc. 63 1457–1483.
34. Reeds, J. A., III (1976). On the definition of von Mises functionals. Ph.D. dissertation, Dept. Statistics, Harvard Univ.Google Scholar
35. Rényi, A. (1953). On the theory of order statistics. Acta Math. Acad Sci. Hungar. 4 191–227.
36. Sebastiāo e Silva, J. (1956). Le calcul différential et intégral dans les espaces localement convexes, réels ou complexes I, II. Rend. Accad. Lincei Sci. Fis. Mat. (8) 20 743–750; 21 40–46.
37. Shorack, G. R. (1982). Kiefer’s theorem via the Hungarian construction. Z. Wahrsch. Verw. Gebiete 61 369–373.
38. Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.
39. Taylor, S. J. (1972). Exact asymptotic estimates of Brownian path variation. Duke Math. J. 39 219–241.
40. van der Vaart, A. (1991). Efficiency and Hadamard differentiability. Scand. J. Statist. 18 63–75.
41. van der Vaart, A., and Wellner, J. (1994). Weak Convergence and Empirical Processes. IMS, Hayward, CA. To appear.Google Scholar
42. Vervaat, W. (1972). Functional central limit theorems for processes with positive drift and their inverses. Z. Wahrsch. Verw. Gebiete 12 245–253.
43. von Mises, R. (1936). Les lois de probabilité pour les fonctions statistiques. Ann. Inst. H. Poincaré 6 185–212.Google Scholar
44. von Mises, R. (1947). On the asymptotic distribution of differentiable statistical functions. Ann. Math. Statist. 18 309–348.
45. Whitt, W. (1980). Some useful functions for functional limit theorems. Math. Oper. Res. 5 67–85.
46. Wong, W H. and Severini, T. A. (1991). On maximum likelihood estimation in infinite dimensional parameter spaces. Ann. Statist. 19 603–632.
47. Young, L. C. (1936). An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 251–282.

## Copyright information

© Springer Science+Business Media, LLC 2010

## Authors and Affiliations

• R. M. Dudley
• 1
1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA