Design Of Next Generation Force Fields From AB Initio Computations: Beyond Point Charges Electrostatics

  • G.A. Cisneros
  • T.A. Darden
  • N. Gresh
  • J. Pilmé
  • P. Reinhardt
  • O. Parisel
  • J.-P. Piquemal
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 7)


We present an overview of the energy functions used in two Anisotropic Polarizable Molecular Mechanics (APMM) procedures namely SIBFA (Sum of Interactions Between Fragments Ab initio computed) and GEM (Gaussian Electrostatic Model). As SIBFA is a second generation APMM scheme based on distributed multipoles, GEM is the first third generation APMM as it uses distributed hermite densities obtained from density fitting. The two approaches are formulated and calibrated on the basis of quantum chemistry. They embody nonclassical effects such as electrostatic penetration, exchange-polarization, and charge transfer. We address here the technical issues of anisotropy, nonadditivity, transferability and computational speedup of methods. In addition, we review the several ab initio intermolecular energy decomposition techniques that can be used to refine polarisable force fields. As we summarize their differences and similarities, we present our own scheme based on Fragment Localized Kohn-Sham orbitals through a Singles- Configuration Interaction (CI) procedure. We also present a chemically intuitive method based on the Electron Localization Function (ELF) which allows to unravel the local electrostatic properties beyond atomic centers: i.e., on bonds, lone pairs and π system, an useful asset to understand bonding in molecules in order to build models


Polarizable force fields Intermolecular interactions Energy decomposition Density fitting Electron localization function Topological analysis Localized orbitals Multipolar moments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yoda T, Sugita Y, Okamoto Y (2004) Secondary-structure preferences of force fields for proteins evaluated by generalized-ensemble simulations. Chem Phys 307:269CrossRefGoogle Scholar
  2. 2.
    Gresh N, Cisneros GA, Darden TA, Piquemal J-P (2007) Anisotropic, polarizable molecular mechanics studies of inter-, intra-molecular interactions, and ligand-macromolecule complexes. A bottom-up strategy. J Chem Theory Comput 3:1960CrossRefGoogle Scholar
  3. 3.
    Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 10:325CrossRefGoogle Scholar
  4. 4.
    Bagus PS, Hermann K, Bauschlicher CW, Jr (1984) A new analysis of charge transfer and polarization for ligandy–metal bonding: Model studies of Al4CO and Al4NH3. J Chem Phys 80:4378CrossRefGoogle Scholar
  5. 5.
    Bagus PS, Illas F (1992) Decomposition of the chemisorption bond by constrained variations: order of the variations and construction of the variational spaces. J Chem Phys 96:8962CrossRefGoogle Scholar
  6. 6.
    Piquemal J-P, Marquez A, Parisel O, Giessner-Prettre C (2005) A CSOV Study of the difference between HF and DFT Intermolecular Interaction Energy Values: the importance of the charge transfer contribution. J Comput Chem 26:1052CrossRefGoogle Scholar
  7. 7.
    Stevens WJ, Fink WH (1987) Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to water dimer. Chem Phys Lett 139:15CrossRefGoogle Scholar
  8. 8.
    Ziegler T, Rauk A (1979) CO, CS, N2, PF3 and CNCH3 as donors and acceptors. A theoretical study by the Hartree-Fock-Slater transition state method. Inorg Chem 18:1755;CrossRefGoogle Scholar
  9. 9.
    Bickelhaupt FM, Baerends EJ (2000) In: Lipkowitz KB, Boyd DB (ed) Rev Comp Chem 15(1), Wiley-VCH, New YorkGoogle Scholar
  10. 10.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94:1887CrossRefGoogle Scholar
  11. 11.
    Reinhardt P, Piquemal J-P, Savin A (2008) Fragment-localized Kohn-Sham orbitals via a Singles-CI procedure and application to local properties and intermolecular energy decomposition analysis. J Chem Theory Comput 4:2020CrossRefGoogle Scholar
  12. 12.
    Pilmé J, Piquemal J-P (2008) Advancing beyond charge analysis using the electronic localization function: Chemically intuitive distribution of electrostatic moments. J Comput Chem 29:1440CrossRefGoogle Scholar
  13. 13.
    Gresh N, Claverie P, Pullman A (1984) Theoretical studies of molecular conformation. Derivation of an additive procedure for the computation of intramolecular interaction energies. Comparison with ab initio SCF computations. Theor Chim 66(1):1–20CrossRefGoogle Scholar
  14. 14.
    Piquemal J-P, Cisneros GA, Reinhardt P, Gresh N, Darden TA (2006) Towards a force field based on density fitting. J Chem Phys 24:104101CrossRefGoogle Scholar
  15. 15.
    Cisneros GA, Piquemal J-P, Darden TA (2006) Generalization of the Gaussian electrostatic model: extension to arbitrary angular momentum, distributed multipoles and speedup with reciprocal space methods. J Chem Phys 125:184101CrossRefGoogle Scholar
  16. 16.
    Cisneros GA, Elking D, Piquemal J-P, Darden TA (2007) Numerical fitting of molecular properties to Hermite Gaussians. J Phys Chem A 111:12049CrossRefGoogle Scholar
  17. 17.
    Gordon MS, Jensen JH (1998) Wavefunctions and chemical bonding. In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III, HF, Schreiner PR (eds) The encyclopedia of computational chemistry, 5:3198 John Wiley and Sons, ChichesterGoogle Scholar
  18. 18.
    Piquemal J-P, Chevreau H, Gresh N (2007) Towards a separate reproduction of the contributions to the Hartree-Fock and DFT intermolecular interaction energies by polarizable molecular mechanics with the SIBFA potential.J Chem Theory Comput 3:824CrossRefGoogle Scholar
  19. 19.
    Piquemal J-P, Chelli R, Procacci P, Gresh N (2007) Key role of the polarization anisotropy of water in modeling classical polarizable force fields. J Phys Chem A 111:8170CrossRefGoogle Scholar
  20. 20.
    Claverie P, PhD Thesis, CNRS library number A.O. 8214, Paris (1973)Google Scholar
  21. 21.
    Claverie P (1976) Localization and delocalization in quantum chemistry. In: Chalvet O, Daudel R, Diner S, Malrieu JP (eds) 21:127, Reidel, DordrechtGoogle Scholar
  22. 22.
    Hess O, Caffarel M, Huiszoon C, Claverie P (1990) Second-order exchange effects in intermolecular interactions. The water dimer. J Chem Phys 92:6049CrossRefGoogle Scholar
  23. 23.
    Khaliullin RZ, Cobar EA, Lochan RC, Bell AT, Head-Gordon M (2007) Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. J Phys Chem A 111:8753CrossRefGoogle Scholar
  24. 24.
    Daudey J-P (1974) Direct determination of localized SCF orbitals. Chem Phys Lett 24:574CrossRefGoogle Scholar
  25. 25.
    Ochsenfeld C, Kussmann J, Lambrecht DS (2007) Linear-scaling methods in quantum chemistry. In: Lipkowitz KB, Cundari TR (ed) Rev Comp Chem 23(1), VCH, New YorkGoogle Scholar
  26. 26.
    Rubio J, Povill A, Malrieu J-P, Reinhardt PJ (1997) Direct determination of localized Hartree-Fock orbitals as a step toward Nscaling procedures. J Chem Phys 107:10044CrossRefGoogle Scholar
  27. 27.
    Pople JA, Gill PMW, Johnson BG (1992) Kohn-Sham density-functional theory within a finite basis set. Chem Phys Lett 199:557CrossRefGoogle Scholar
  28. 28.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397CrossRefGoogle Scholar
  29. 29.
    Savin A, Flad OJ, Andersen J, Preuss H, Von Schering HG, Angew (1992) Electron localization in solid-state. Structures for the elements: the diamond. Chem Int 31:187CrossRefGoogle Scholar
  30. 30.
    Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683CrossRefGoogle Scholar
  31. 31.
    Piquemal J-P, Pilmé J, Parisel O, Gérard H, Fourré I, Bergès J, Gourlaouen C, de la Lande A, van Severen MC, Silvi B (2008) What can be learnt on biological or biomimetic systems with the topological analysis of the electron localization function? Int J Quant Chem 108:1951CrossRefGoogle Scholar
  32. 32.
    Popelier PLA (2000) Atoms in molecules: An introduction, Prentice-Hall, Harlow, UKGoogle Scholar
  33. 33.
    Bader RFW (1990) Atoms in molecules: A quantum theory, Oxford University Press, OxfordGoogle Scholar
  34. 34.
    Vigné-Maeder F, Claverie P (1988) The exact multicenter multipolar part of a molecular charge distribution and its simplified representations. J Chem Phys 88:4934CrossRefGoogle Scholar
  35. 35.
    Garmer DR, Stevens WJ (1989) Transferability of molecular distributed polarizabilities from a simple localized orbital based method. J Phys Chem 93:8263CrossRefGoogle Scholar
  36. 36.
    Piquemal J-P int. J. Quant Chem. (2010) submitted (Theobio 09, special issue)Google Scholar
  37. 37.
    Piquemal J-P, Gresh N, Giessner-Prettre C (2003) Improved formulas for the calculation of the electrostatic contribution to intermolecular interaction energy from multipolar expansion of the electronic distribution. J Phys Chem A 107:10353CrossRefGoogle Scholar
  38. 38.
    Murrel JN, Teixeira D (1970) J Mol Phys 19:521CrossRefGoogle Scholar
  39. 39.
    Williams DR, Schaad LJ, Murrel JN (1967) J Chem Phys 47:4916CrossRefGoogle Scholar
  40. 40.
    Piquemal J-P (2004) Evaluation of molecular interactions in bioinorganic systems: from ab initio computations to polarizable force fields. PhD Thesis, UPMC number 2004PA066267, Université Pierre et Marie Curie, Paris, FranceGoogle Scholar
  41. 41.
    Gresh N, Piquemal J-P, Krauss M (2005) Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contribution of the intermolecular interaction energy. Comparisons with parallel ab initio computations. J Comput Chem 26:1113CrossRefGoogle Scholar
  42. 42.
    Mulliken R, Rieke C, Orloff D, Orloff H (1948) Formulas and numerical tables for overlap integrals. J Chem Phys 17:1248CrossRefGoogle Scholar
  43. 43.
    Roothan CJ (1951) A study of two-center integrals useful in calculations on molecular structure. J Chem Phys 19:1445CrossRefGoogle Scholar
  44. 44.
    Foster JM, Boys SF (1960) Canonical configurational interaction procedure. Rev Mod Phys 32:300CrossRefGoogle Scholar
  45. 45.
    Gresh N (1995) Energetics of Zn2+ binding to a series of biologically relecant ligands: A molecular mechanics investigation grounded on ab initio self-consistent field supermolecular computations. J Comput Chem 16:856CrossRefGoogle Scholar
  46. 46.
    Murrel JN, Randic M, Williams DR (1966) Proc Roy Soc A 284:566 (London)Google Scholar
  47. 47.
    Gresh N, Claverie P, Pullman A (1982) Computations of intermolecular interactions: Expansion of a charge-transfer energy contribution in the framework of an additive procedure. Applications to hydrogen-bonded systems. Int J Quant Chem 22:199CrossRefGoogle Scholar
  48. 48.
    Gresh N, Claverie P, Pullman A (1986) Intermolecular interactions: Elaboration on an additive procedure including an explicit charge-transfer contribution. Int J Quant Chem 29:101CrossRefGoogle Scholar
  49. 49.
    Creuzet S, Langlet J, Gresh N (1991) J Chim Phys 88:2399Google Scholar
  50. 50.
    Piquemal J-P, Gresh N (to be published)Google Scholar
  51. 51.
    Piquemal J-P, Williams-Hubbard B, Fey N, Deeth RJ, Gresh N, Giessner-Prettre C (2003) Inclusion of the ligand field contribution in a polarizable molecular mechanics: SIBFA LF. J Comput Chem 24:1963CrossRefGoogle Scholar
  52. 52.
    Schäffer CE, Jørgensen CK (1965) The angular overlap model, an attempt to revive the ligand field approaches. Mol Phys 9:401CrossRefGoogle Scholar
  53. 53.
    Deeth RJ (2001) The ligand field molecular mechanics model and the stereoelectronic effects of d and s electrons. Coord Chem Rev 212:11CrossRefGoogle Scholar
  54. 54.
    Woodley M, Battle PD, Catlow CRA, Gale JD (2001) Development of a new interatomic potential for the modeling of ligand field effects. J Phys Chem B 105:6824CrossRefGoogle Scholar
  55. 55.
    Boys SF, Shavit I (1959) A fundamental calculation of the energy surface for the system of three hydrogens atoms, NTIS, Springfield, VA, AD212985Google Scholar
  56. 56.
    Dunlap BI, Connolly JWD, Sabin JR (1979) On first row diatomic molecules and local density models. J Chem Phys 71:4993CrossRefGoogle Scholar
  57. 57.
    McMurchie LE, Davidson ER (1978) One- and two-electron integrals over cartesian gaussian functions. J Comp Phys 26:218CrossRefGoogle Scholar
  58. 58.
    Cisneros GA, Piquemal J-P, Darden TA (2005) Intermolecular electrostatic energies using density fitting. J Chem Phys 123:044109CrossRefGoogle Scholar
  59. 59.
    Wheatley RJ, Price S (1990) An overlap model for estimating the anisotropy of repulsion. Mol Phys 69:507CrossRefGoogle Scholar
  60. 60.
    Piquemal J-P, Perera L, Cisneros GA, Ren P, Pedersen LG, Darden TA (2006) Towards accurate solvation dynamics of divalent cations in water using the polarizable Amoeba force field: from energetics to structure. J Chem Phys 125:054511CrossRefGoogle Scholar
  61. 61.
    Ren P, Ponder JW (2003) Temperature and pressure dependence of AMOEBA water model. J Phys Chem B 107:5933CrossRefGoogle Scholar
  62. 62.
    Darden TA (2008) Dual bases in crystallographic computing. In International Tables of Crystallography, vol. B, 3rd edn. Kluwer Academic Publishers, Dordrecht, The Netherlands, (in press)Google Scholar
  63. 63.
    Fusti-Molnar L, Pulay P (2002) The Fourier transform Coulomb method: Efficient and accurate calculation of the Coulomb operator in a Gaussian basis. J Chem Phys 117:7827CrossRefGoogle Scholar
  64. 64.
    Sagui C, Pedersen LG, Darden TA (2004) Towards an accurate representation of electrostatics in classical force fields: Efficient implementation of multipolar interactions in biomolecular simulations. J Chem Phys 120:73–87CrossRefGoogle Scholar
  65. 65.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577CrossRefGoogle Scholar
  66. 66.
    York D, Yang W (1994) The fast Fourier Poisson method for calculating Ewal sums. J Chem Phys 101:3298CrossRefGoogle Scholar
  67. 67.
    Shan YB, Klepeis JL, Eastwood MP, Dror RO, Shaw DE (2005) Gaussian split Ewald: A fast Ewald mesh method for molecular simulation. J Chem Phys 122:054101CrossRefGoogle Scholar
  68. 68.
    Cisneros GA, Piquemal J-P, Darden TA (2006) QM/MM electrostatic embedding with continuous and discrete functions. J Phys Chem B 110:13682CrossRefGoogle Scholar
  69. 69.
    Cisneros GA, Na-Im Tholander S, Elking D, Darden TA, Parisel O, Piquemal J-P (2008) Simple formulas for improved point-charge electrostatics in classical force fields and hybrid Quantum Mechanical/Molecular Mechanical embedding. Int J Quant Chem 108:1905CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • G.A. Cisneros
    • 1
  • T.A. Darden
    • 1
  • N. Gresh
    • 2
  • J. Pilmé
    • 3
    • 4
    • 5
  • P. Reinhardt
    • 4
    • 5
  • O. Parisel
    • 4
    • 5
  • J.-P. Piquemal
    • 4
    • 5
  1. 1.Laboratory of Structural BiologyNational Institute of Environmental Health SciencesUSA
  2. 2.Laboratoire de Pharmacochimie Moléculaire et Cellulaire, U648 INSERM, UFR BiomédicaleUniversité René-DescartesFrance
  3. 3.Faculté de pharmacieUniversité de Lyon, Université Lyon 1F-69373 Lyon, Cedex 08France
  4. 4.Laboratoire de Chimie ThéoriqueUPMC Univ Paris 06, UMR 7616France
  5. 5.Laboratoire de Chimie ThéoriqueCNRS, UMR 7616France

Personalised recommendations