Interpreting The Observed Substrate Selectivity And The Product Regioselectivity In Orf2-Catalyzed Prenylation From X-Ray Structures

  • Guanglei Cui
  • Xue Li
  • Ning Yu
  • Kenneth M. Merz
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 7)


The combined QM/MM based X-ray crystallography technique is described. Its relevant strengths and weaknesses relative to traditional refinement protocols are discussed. The method is illustrated by refining Orf2 protein–ligand complexes and comparing the QM/MM based method to CNS derived results. It is shown that in this instance the QM/MM based approach give superior results to traditional MM based refinements methods as implemented in CNS


X-ray crystallography X-ray refinement Protein–ligand complexes Orf2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banaszak LJ, (2000) Foundation of structural biology, Academic Press, San DiegoGoogle Scholar
  2. 2.
    Lesk AM, (2001) Introduction to protein architecture: the structural biology of proteins,Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Marti-Renom MA et al (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325CrossRefGoogle Scholar
  4. 4.
    Bonneau R, Baker D (2001) Ab initio protein structure prediction: progress and prospects. Annu Rev Biophys Biomol Struct 30:173–189CrossRefGoogle Scholar
  5. 5.
    Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96CrossRefGoogle Scholar
  6. 6.
    Schueler-Furman O et al (2005) Progress on modeling of protein structures and interactions. Science 310(5748):638–642CrossRefGoogle Scholar
  7. 7.
    Skolnick J (2006) In quest of an empirical potential for protein structure prediction. Curr Opin Struct Biol 16(2):166–171CrossRefGoogle Scholar
  8. 8.
    Kuhlman B et al (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302(5649):1364–1368CrossRefGoogle Scholar
  9. 9.
    Bradley P, Misura KMS, Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309(5742):1868–1871CrossRefGoogle Scholar
  10. 10.
    Brunger AT (1988) Crystallographic refinement by simulated annealing. Application to a 2.8Å resolution structure of aspartate aminotransferase. J Mol Biol 203(3):803–816CrossRefGoogle Scholar
  11. 11.
    Adams PD et al (1997) Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proc Natl Acad Sci USA 94(10):5018–5023CrossRefGoogle Scholar
  12. 12.
    Yu N, Yennawar H, Merz KM Jr (2005) Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics. Acta Crystallogr D Biol Crystallogr 61:322–332CrossRefGoogle Scholar
  13. 13.
    Yu N, Merz KM Jr (2004) Theoretical study of the electron density distributions of glycyl-L-threonine dihydrate. Molecular Physics 102(23–24):2545–2557CrossRefGoogle Scholar
  14. 14.
    Ryde U, Nilsson K (2003) Quantum chemistry can locally improve protein crystal structures. J Am Chem Soc 125(47):14232–14233CrossRefGoogle Scholar
  15. 15.
    Yu N et al (2006) Critical assessment of quantum mechanics based energy restraints in protein crystal structure refinement. Protein Sci 15(12):2773–2784CrossRefGoogle Scholar
  16. 16.
    Nilsson K et al (2004) The protonation status of compound II in myoglobin, studied by a combination of experimental data and quantum chemical calculations: quantum refinement. Biophys J 87(5):3437–3447CrossRefGoogle Scholar
  17. 17.
    Nilsson K, Ryde U (2004) Protonation status of metal-bound ligands can be determined by quantum refinement. J Inorg Biochem 98(9):1539–1546CrossRefGoogle Scholar
  18. 18.
    Yu N et al (2006) Assigning the protonation states of the key aspartates in beta-secretase using QM/MM X-ray structure refinement. J Chem Theory Comput 2(4):1057–1069CrossRefGoogle Scholar
  19. 19.
    Jack A, Levitt M (1978) Refinement of large structures by simultaneous minimization of energy and R factor. Acta Crystallogr A 34:931–935CrossRefGoogle Scholar
  20. 20.
    Brunger AT, Adams PD (2002) Molecular dynamics applied to X-ray structure refinement. Acc Chem Res 35(6):404–412CrossRefGoogle Scholar
  21. 21.
    Engh R, Huber R (1991) Accurate bond and angle parameters for X-ray protein-structure refinement. Acta Crystallogr A 47:392–400CrossRefGoogle Scholar
  22. 22.
    Brunger AT (1992) Free R-value – a novel statistical quantity for assessing the accuracy of crystal-structures. Nature 355(6359):472–475CrossRefGoogle Scholar
  23. 23.
    Read RJ (1986) Improved fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr A 42:140–149CrossRefGoogle Scholar
  24. 24.
    Read RJ (1990) Structure-factor probabilities for related structures. Acta Crystallogr A 46:900–912CrossRefGoogle Scholar
  25. 25.
    Pannu NS, Read RJ (1996) Improved structure refinement through maximum likelihood. Acta Crystallogr A 52:659–668CrossRefGoogle Scholar
  26. 26.
    Adams PD et al (1997) Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proc Natl Acad Sci USA 94(10):5018–5023CrossRefGoogle Scholar
  27. 27.
    Brunger AT, Adams PD (2002) Molecular dynamics applied to X-ray structure refinement. Accounts of Chemical Research 35(6):404–412CrossRefGoogle Scholar
  28. 28.
    Brunger AT, Adams PD, Clore GM, Delano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D 54:905–921CrossRefGoogle Scholar
  29. 29.
    Brunger AT, Karplus M, Petsko GA (1989) Crystallographic refinement by simulated annealing – application to crambin. Acta Crystallogr A 45:50–61CrossRefGoogle Scholar
  30. 30.
    Warshel A, Levitt M, (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249CrossRefGoogle Scholar
  31. 31.
    Spurgeon SL, Porter JW (1981) In biosynthesis of isoprenoid compounds. In: Porter JW, Spurgeon SL (eds) John Wiley and Sons, New York, p 1Google Scholar
  32. 32.
    Qureshi N, Spurgeon SL (1981) In biosynthesis of isoprenoid compounds. In: Porter JW, Spurgeon SL (eds) John Wiley and Sons, New York, p 47Google Scholar
  33. 33.
    Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16(5):565–574CrossRefGoogle Scholar
  34. 34.
    Piironen V et al (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80(7):939–966CrossRefGoogle Scholar
  35. 35.
    Santos FA, Rao VSN (1998) Inflammatory edema induced by 1,8-cineole in the hindpaw of rats: a model for screening antiallergic and anti-inflammatory compounds. Phytomedicine 5(2):115–119Google Scholar
  36. 36.
    Blanco-Colio LM et al (2003) Anti-inflammatory and immunomodulatory effects of statins. Kidney Int 63(1):12–23CrossRefGoogle Scholar
  37. 37.
    Grosser N et al (2004) The antioxidant defense protein heme oxygenase 1 is a novel target for statins in endothelial cells. Free Radic Biol Med 37(12):2064–2071CrossRefGoogle Scholar
  38. 38.
    Chowdhury SA et al (2005) Tumor-specificity and apoptosis-inducing activity of stilbenes and flavonoids. Anticancer Res 25(3B):2055–2063Google Scholar
  39. 39.
    Jahangir T et al (2005) Alleviation of free radical mediated oxidative and genotoxic effects of cadmium by farnesol in Swiss albino mice. Redox Rep 10(6):303–310CrossRefGoogle Scholar
  40. 40.
    Soria-Mercado IE et al (2005) Antibiotic terpenoid chloro-dihydroquinones from a new marine actinomycete. J Nat Prod 68(6):904–910CrossRefGoogle Scholar
  41. 41.
    Zhou YD et al (2005) Terpenoid tetrahydroisoquinoline alkaloids emetine, klugine, and isocephaeline inhibit the activation of hypoxia-inducible factor-1 in breast tumor cells. J Nat Prod 68(6):947–950CrossRefGoogle Scholar
  42. 42.
    Boucher K et al (2006) HMG-coa reductase inhibitors induce apoptosis in pericytes. Microvasc Res 71(2):91–102CrossRefGoogle Scholar
  43. 43.
    Hwang DR et al (2006) Synthesis and anti-viral activity of a series of sesquiterpene lactones and analogues in the subgenomic HCV replicon system. Bioorg Med Chem 14(1):83–91CrossRefGoogle Scholar
  44. 44.
    Jahangir T et al (2006) Farnesol prevents Fe-NTA-mediated renal oxidative stress and early tumour promotion markers in rats. Hum Exp Toxicol 25(5):235–242CrossRefGoogle Scholar
  45. 45.
    Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106(8):3412–3442CrossRefGoogle Scholar
  46. 46.
    Kuzuyama T, Noel JP, Richard SB (2005) Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 435(7044):983–987CrossRefGoogle Scholar
  47. 47.
    Botta B et al (2005) Novel prenyltransferase enzymes as a tool for flavonoid prenylation. Trends Pharmacol Sci 26(12):606–608CrossRefGoogle Scholar
  48. 48.
    Koehl P Relaxed specificity in aromatic prenyltransferases. Nat Chem Biol 1(2):71–72Google Scholar
  49. 49.
    Taylor JS et al (2003) Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J 22(22):5963–5974CrossRefGoogle Scholar
  50. 50.
    Zhang H, Seabra MC, Deisenhofer J (2000) Crystal structure of Rab geranylgeranyltransferase at 2.0 angstrom resolution. Structure Fold Des 8(3):241–251CrossRefGoogle Scholar
  51. 51.
    Park HW et al (1997) Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution. Science 275(5307):1800–1804CrossRefGoogle Scholar
  52. 52.
    Kleywegt G et al (2004) The uppsala electron-density server. Acta Crystallogr D Biol Crystallogr 60:2240–2249CrossRefGoogle Scholar
  53. 53.
    Yu N, Hayik SA, Wang B, Liao N, Reynolds CH, Merz KM Jr (2006) Assigning the protonation states of the key aspartates in beta-secretase using QM/MM X-ray structure refinement. J Chem Theory Comput (Web release, June 7)Google Scholar
  54. 54.
    Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8Google Scholar
  55. 55.
    Yang W (1991) Direct calculation of electron-density in density-functional theory. Phys Rev Lett 66(11):1438–1441CrossRefGoogle Scholar
  56. 56.
    Yang W, Lee T (1995) A density-matrix divide-and-conquer approach for electronic-structure calculations of large molecules. J Chem Phys 103(13):5674–5678CrossRefGoogle Scholar
  57. 57.
    Dixon SL, Merz KM Jr (1996) Semiempirical molecular orbital calculations with linear system size scaling. J Chem Phys 104(17):6643–6649CrossRefGoogle Scholar
  58. 58.
    Lee T, York D, Yang W (1996) Linear-scaling semiempirical quantum calculations for macromolecules. J Chem Phys 105(7):2744–2750CrossRefGoogle Scholar
  59. 59.
    Dixon SL, Merz KM Jr (1997) Fast, accurate semiempirical molecular orbital calculations for macromolecules. J Chem Phys 107(3):879–893CrossRefGoogle Scholar
  60. 60.
    Stewart J (1989) Optimization of parameters for semiempirical methods. 1: method. J Comput Chem 10(2):209–220CrossRefGoogle Scholar
  61. 61.
    Stewart J (1989) Optimization of parameters for semiempirical methods. 2: applications. J Comput Chem 10(2):221–264CrossRefGoogle Scholar
  62. 62.
    Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Comm 91:275–282CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Guanglei Cui
    • 1
  • Xue Li
    • 1
  • Ning Yu
    • 2
  • Kenneth M. Merz
    • 1
  1. 1.Department of Chemistry and the Quantum Theory ProjectUniversity of FloridaGainesvilleUSA
  2. 2.Simulations Plus,Inc.LancasterUSA

Personalised recommendations