Advertisement

Silicon Nanowires: From Empirical to First Principles Modeling

  • Ricardo W. NunesEmail author
  • JoÃo F. Justo
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 9)

Abstract:

Silicon nanowires have been the subject of intense investigation over the last decade. The experimental realization of nanowire configurations with a wide range of diameters, lengths, and surface types leads us to envision a wealth of applications, running from selective sensors of rapid response to electronic devices. In this period, theoretical modeling has helped to understand the electronic, mechanical, optical and transport properties of nanowires and to explore applications of such properties in the context of the current electronic technologies. These modern theoretical calculations have reached a point where realistic description of materials properties are provided by computational simulations. Carefully constructed empirical potentials provide a good description of silicon-nanowire energetics, making possible investigations of the stability of silicon wires with different surface terminations (or facets) for a given family of nanowires. Simulations using empirical potentials have also been employed to examine the thermal and mechanical stability of silicon nanowires, and also the response under external load. In the latter case, there is and indication that the response under load of silicon nanowires is different from the bulk, to the extent that crack propagation is suppressed and healing at the crack is mediated by surface effects. Investigation of nanowire properties are also within the reach of tight-binding and first principles methodologies, that have been used to examine the effects of quantum confinement on the nanowire electronic, transport and structural properties, as well as the nature of their surface states. These methods have also been used to examine the possibility of structural transitions of very thin silicon wires, induced by surface effects

Keywords:

Nanowires Atomistic modeling 

References

  1. 1.
    Campaño R, Molenkamp L, Paul DJ (eds) (1997) Technology Roadmap for Nanoelectronics in “European Commision for Future and Emerging Technologies”.Google Scholar
  2. 2.
    Morales AM, Lieber CM (1998) Science 279: 208.CrossRefGoogle Scholar
  3. 3.
    Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Lieber Nature 415: 617.CrossRefGoogle Scholar
  4. 4.
    Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM, Heath JR (2003) Science 300: 112.CrossRefGoogle Scholar
  5. 5.
    Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) Adv Mater 15: 353.CrossRefGoogle Scholar
  6. 6.
    Lu W, Lieber CM (2007) Nat Mater 6: 841.CrossRefGoogle Scholar
  7. 7.
    Stone NJ, Ahmed H (1998) Appl Phys Lett 73: 2134.CrossRefGoogle Scholar
  8. 8.
    Stone NJ, Ahmed H (1998) Microeletr Eng 42: 511.CrossRefGoogle Scholar
  9. 9.
    Cui Y, Lieber CM (2001) Science 291: 851.CrossRefGoogle Scholar
  10. 10.
    Huang Y, Duan XF, Cui Y, Lauhon LJ, Kim KH, Lieber CM (2001) Science 294: 1313.CrossRefGoogle Scholar
  11. 11.
    Chung SW, Yu JY, Heath JR (2000) Appl Phys Lett 76: 2068.CrossRefGoogle Scholar
  12. 12.
    Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Nature 421: 241.CrossRefGoogle Scholar
  13. 13.
    Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Science 292: 1897.CrossRefGoogle Scholar
  14. 14.
    Cui Y, Wei QQ, Park HK, Lieber CM (2001) Science 293: 1289.CrossRefGoogle Scholar
  15. 15.
    Zhou XT, Hu JQ, Li CP, Ma DDD, Lee CS, Lee ST (2003) Chem Phys Lett 369: 220.CrossRefGoogle Scholar
  16. 16.
    Patolsky F, Zheng GF, Lieber CM (2006) Nat Protoc 1: 1711.CrossRefGoogle Scholar
  17. 17.
    Iijima S, Ichihashi T (1993) Nature 363: 603.CrossRefGoogle Scholar
  18. 18.
    Cui Y, Zhong ZH, Wang DL, Wang WU, Lieber CM (2003) Nano Lett 3: 149.CrossRefGoogle Scholar
  19. 19.
    Lehmann V, Gosele U (1991) Appl Phys Lett 58: 856.CrossRefGoogle Scholar
  20. 20.
    Stucky GD, Macdougall JE (1990) Science 247: 669.CrossRefGoogle Scholar
  21. 21.
    Ridley BK (1991) Rep Prog Phys 54: 169.CrossRefGoogle Scholar
  22. 22.
    Liu HI, Biegelsen DK, Ponce FA, Johnson NM, Pease RFW (1994) Appl Phys Lett 64: 1383.CrossRefGoogle Scholar
  23. 23.
    Liu HI, Biegelsen DK, Johnson NM, Ponce FA, Pease RFW (1994) J Vac Sci Tech 11: 2532.Google Scholar
  24. 24.
    Namatsu H, Takahashi Y, Nagase M, Murase K (1995) J Vac Sci Tech B 13: 2166.CrossRefGoogle Scholar
  25. 25.
    Kurihara K, Iwadate K, Namatsu H, Nagase M, Takenaka H, Murase K (1995) Jn J Appl Phys 34: 6940.Google Scholar
  26. 26.
    Ono T, Saitoh H, Esashi M (1997) Appl Phys Lett 70: 1852.CrossRefGoogle Scholar
  27. 27.
    Almawlawi D, Liu CZ, Moskovits M (1994) J Mater Res 9: 1014.CrossRefGoogle Scholar
  28. 28.
    Coleman NRB, Morris MA, Spalding TR, Holmes JD (2001) J Am Chem Soc 123: 187.CrossRefGoogle Scholar
  29. 29.
    Zhang YF, Tang YH, Wang N, Yu DP, Lee CS, Bello I, Lee ST (1998) Appl Phys Lett 72: 1835.CrossRefGoogle Scholar
  30. 30.
    Wang N, Tang YH, Zhang YF, Lee CS, Lee ST (1998) Phys Rev B 58: 16024.CrossRefGoogle Scholar
  31. 31.
    Marsen B, Sattler K (1999) Phys Rev B 60: 11593.CrossRefGoogle Scholar
  32. 32.
    Yu DP, Bai ZG, Ding Y, Hang QL, Zhang HZ, Wang JJ, Zou YH, Qian W, Xiong GC, Zhou HT, Feng SQ (1998) Appl Phys Lett 72: 3458.CrossRefGoogle Scholar
  33. 33.
    Gole JL, Stout JD, Rauch WL, Wang ZL (2000) Appl Phys Lett 76: 2346.CrossRefGoogle Scholar
  34. 34.
    Zhang YF, Tang YH, Lam C, Wang N, Lee CS, Bello I, Lee ST (2000) J Cryst Growth 212: 115.CrossRefGoogle Scholar
  35. 35.
    Pan ZW, Dai ZR, Xu L, Lee ST, Wang ZL (2001) J Phys Chem 105: 2507.Google Scholar
  36. 36.
    Westwater J, Gosain DP, Tomiya S, Usui S, Ruda H (1997) J Vacc Sci Tech 15: 554.CrossRefGoogle Scholar
  37. 37.
    Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Science 287: 1471.CrossRefGoogle Scholar
  38. 38.
    Gudiksen MS, Lieber CM (2000) J Am Chem Soc 122: 8801.CrossRefGoogle Scholar
  39. 39.
    Kamins TI, Williams RS, Chen Y, Chang YL, Chang YA (2000) Appl Phys Lett 76: 562.CrossRefGoogle Scholar
  40. 40.
    Zhang RQ, Lifshitz Y, Lee ST (2003) Adv Mater 15: 635.CrossRefGoogle Scholar
  41. 41.
    Lu XM, Hanrath T, Johnston KP, Korgel BA (2003) Nano Lett 3: 93.CrossRefGoogle Scholar
  42. 42.
    Hanrath T, Korgel BA (2003) Adv Mater 15: 437.CrossRefGoogle Scholar
  43. 43.
    Hofmann S, Sharma R, Wirth CT, Cervantes-Sodi F, Ducati C, Kasama T, Dunin-Borkowski RE, Drucker J, Bennett P, Robertson J (2008) Nat Mater 7: 372.CrossRefGoogle Scholar
  44. 44.
    Kodambaka S, Tersoff J, Reuter MC, Ross FM (2006) Phys Rev Lett 96: 096105.CrossRefGoogle Scholar
  45. 45.
    Ross FM, Tersoff J, Reuter MC (2005) Phys Rev Lett 95: 146104.CrossRefGoogle Scholar
  46. 46.
    Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST (2003) Science 299: 1874.CrossRefGoogle Scholar
  47. 47.
    Wu Y, Cui Y, Huynh L, Barrelet CJ, Bell DC, Lieber CM (2004) Nano Lett 4: 433.CrossRefGoogle Scholar
  48. 48.
    Jarrold MF, Constant VA (1991) Phys Rev Lett 67: 2994.CrossRefGoogle Scholar
  49. 49.
    Hunter JM, Fye JL, Jarrold MF, Bower JE (1994) Phys Rev Lett 73: 2063.CrossRefGoogle Scholar
  50. 50.
    Menon M, Richter E (1999) Phys Rev Lett 83: 792.CrossRefGoogle Scholar
  51. 51.
    Fagan SB, Baierle RJ, Mota R, da Silva AJR, Fazzio A (2000) Phys Rev B 61: 9994.CrossRefGoogle Scholar
  52. 52.
    Zhang RQ, Lee ST, Law CK, Li WK, Teo BK (2002) Chem Phys Lett 364: 251.CrossRefGoogle Scholar
  53. 53.
    Barnard AS, Russo SP (2003) J Phys Chem 107: 7577.Google Scholar
  54. 54.
    Zhang M, Kan YH, Zang OJ, Su ZM, Wang RS (2003) Chem Phys Lett 379: 81.CrossRefGoogle Scholar
  55. 55.
    Zhang RQ, Lee HL, Li WK, Teo BK (2005) J Phys Chem 109: 8605.Google Scholar
  56. 56.
    Pradhan P, Ray AK, (2006) J Comput Theor Nanosc 3: 128.Google Scholar
  57. 57.
    Kang JW, Seo JJ, Hwang HJ (2002) J Nanosci Nanotech 2: 687.CrossRefGoogle Scholar
  58. 58.
    Dumitrică T, Hua M, Yakobson BI (2004) Phys Rev B 70: 241303.CrossRefGoogle Scholar
  59. 59.
    Zhao MW, Zhang RQ, Xia YY, Song C, Lee ST (2007) J Phys Chem C 111: 1234.CrossRefGoogle Scholar
  60. 60.
    Yan BH, Zhou G, Wu J, Duan WH, Gu BL (2006) Phys Rev B 73: 155432.CrossRefGoogle Scholar
  61. 61.
    Yan BH, Zhou G, Zeng XC, Wu J, Gu BL, Duan WH (2007) Appl Phys Lett 91: 103107.CrossRefGoogle Scholar
  62. 62.
    Ni M, Luo GF, Lu J, Lai L, Wang L, Jing MW, Song W, Gao ZX, Li GP, Mei WN, Yu DP (2007) Nanotechnology 18: 505707.CrossRefGoogle Scholar
  63. 63.
    Zhang DB, Hua M, Dumitrică T (2008) J Chem Phys 128: 084104.CrossRefGoogle Scholar
  64. 64.
    Li BX, Cao PL, Zhang RQ, Lee ST (2002) Phys Rev B 65: 125305.CrossRefGoogle Scholar
  65. 65.
    Zhao YF, Yakobson BI (2003) Phys Rev Lett 91: 035501.CrossRefGoogle Scholar
  66. 66.
    Zhang RQ, Lifshitz Y, Ma DDD, Zhao YL, Frauenheim T, Lee ST, Tong SY (2005) J Chem Phys 123: 144703.CrossRefGoogle Scholar
  67. 67.
    Räthlisberger U, Andreoni W, Parrinello M (1994) Phys Rev Lett 72: 665.CrossRefGoogle Scholar
  68. 68.
    Landman U, Barnett RN, Scherbakov AG, Avouris P (2000) Phys Rev Lett 85: 1958.CrossRefGoogle Scholar
  69. 69.
    Ponomareva I, Menon M, Srivastava D, Andriotis AN (2005) Phys Rev Lett 95: 265502.CrossRefGoogle Scholar
  70. 70.
    Akiyama T, Nakamura K, Ito T (2006) Phys Rev B 74: 033307.CrossRefGoogle Scholar
  71. 71.
    Ponomareva I, Menon M, Richter E, Andriotis AN (2006) Phys Rev B 74: 125311.CrossRefGoogle Scholar
  72. 72.
    Liu SD, Jayanthi CS, Zhang ZY, Wu SY (2007) J Comput Theor Nanosci 4: 275.Google Scholar
  73. 73.
    Maeda S, Akiyama T, Nakamura K, Ito T (2007) J Cryst Growth 301: 871.CrossRefGoogle Scholar
  74. 74.
    Ng MF, Zhou LP, Yang SW, Sim LY, Tan VBC, Wu P (2007) Phys Rev B 76: 155435.CrossRefGoogle Scholar
  75. 75.
    Ponomareva I, Richter E, Andriotis AN, Menon M (2007) Nano Lett 7: 3424.CrossRefGoogle Scholar
  76. 76.
    Lu N, Ciobanu CV, Chan TL, Chuang FC, Wang CZ, Ho KM (2007) J Phys Chem 111: 7933.Google Scholar
  77. 77.
    Sorokin PB, Avramov PV, Kvashnin AG, Kvashnin DG, Ovchinnikov SG, Fedorov AS (2008) Phys Rev B 77: 235417.CrossRefGoogle Scholar
  78. 78.
    Ma L, Wang HG, Zhao JJ, Wang GH (2008) Chem Phys Lett 452: 183.CrossRefGoogle Scholar
  79. 79.
    Rurali R, Cartoixa X, Galvao DS (2008) Phys Rev B 77: 073403.CrossRefGoogle Scholar
  80. 80.
    Rurali R, Lorente N (2005) Phys Rev Lett 94: 026805.CrossRefGoogle Scholar
  81. 81.
    Wu ZG, Neaton JB, Grossman JC (2008) Phys Rev Lett 100: 246804.CrossRefGoogle Scholar
  82. 82.
    Hohenberg P, Kohn W (1964) Phys Rev 136: B864.CrossRefGoogle Scholar
  83. 83.
    Kohn W, Sham LJ (1965) Phys Rev 140: A1133.CrossRefGoogle Scholar
  84. 84.
    Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Rev Mod Phys 64: 1045.CrossRefGoogle Scholar
  85. 85.
    Nguyen-Manh D, Vitek V, Horsfield AP (2007) Prog Mater Sci 52: 255.CrossRefGoogle Scholar
  86. 86.
    Beck TL (2000) Rev Mod Phys 72: 1041.CrossRefGoogle Scholar
  87. 87.
    Balamane H, Halicioglu T, Tiller WA (1992) Phys Rev B 46: 2250.CrossRefGoogle Scholar
  88. 88.
    Justo JF (2005) In: S. Yip (ed) Handbook of Materials Modeling, Springer, Dordrecht.Google Scholar
  89. 89.
    Stillinger FH, Weber TA (1985) Phys Rev B 31: 5262.CrossRefGoogle Scholar
  90. 90.
    Tersoff J (1988) Phys Rev B 37: 6991.CrossRefGoogle Scholar
  91. 91.
    Justo JF, Bazant MZ, Kaxiras E, Bulatov VV, Yip S (1998) Phys Rev B 58: 2539.CrossRefGoogle Scholar
  92. 92.
    Menezes RD, Justo JF, Assali LVC (2007) Phys Stat Solid A 204: 951.CrossRefGoogle Scholar
  93. 93.
    Carlsson AE (1990) In Ehrenreich H, Turnbull D (eds) Solid State Physics, vol. 43 Academic Press, San Diego, pp. 1-91.Google Scholar
  94. 94.
    Harrison WA (1989) In: Electronic Structure and the Properties of Solids, Dover Publications, New York.Google Scholar
  95. 95.
    Kwon I, Biswas R, Wang CZ, Ho KM, Soukoulis CM (1994) Phys Rev B 49: 7242.CrossRefGoogle Scholar
  96. 96.
    Tang MS, Wang CZ, Chan CT, Ho KM (1996) Phys Rev B 53: 979.CrossRefGoogle Scholar
  97. 97.
    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58: 7260.CrossRefGoogle Scholar
  98. 98.
    Lenosky TJ, Kress JD, Kwon I, Voter AF, Edwards B, Richards DF, Yang S, Adams JB (1997) Phys Rev B 55: 1528.CrossRefGoogle Scholar
  99. 99.
    Goedecker S (1999) Rev Mod Phys 71: 1085.CrossRefGoogle Scholar
  100. 100.
    Li XP, Nunes RW, Vanderbilt D (1993) Phys Rev B 47: 10891.CrossRefGoogle Scholar
  101. 101.
    Nunes RW, Vanderbilt D (1994) Phys Rev B 50: 17611.CrossRefGoogle Scholar
  102. 102.
    Herring C (1951) Phys Rev 82: 87.CrossRefGoogle Scholar
  103. 103.
    Zhao Y, Yakobson BI (2003) Phys Rev Lett 91: 035501.CrossRefGoogle Scholar
  104. 104.
    Justo JF, Menezes RD, Assali LVC (2007) Phys Rev B 75: 045303.CrossRefGoogle Scholar
  105. 105.
    Kagimura R, Nunes RW, Chacham H (2005) Phys Rev Lett 95: 115502.CrossRefGoogle Scholar
  106. 106.
    Kizuka T, Takatani Y, Asaka K, Yoshizaki R (2005) Phys Rev B 72: 035333.CrossRefGoogle Scholar
  107. 107.
    Stekolnikov AA, Bechstedt F (2005) Phys Rev B 72: 125326.CrossRefGoogle Scholar
  108. 108.
    Ismail-Beigi S, Arias T (1998) Phys Rev B 57: 11923.CrossRefGoogle Scholar
  109. 109.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77: 11593.CrossRefGoogle Scholar
  110. 110.
    Troullier N, Martins JL (1991) Phys Rev B 43: 1993.CrossRefGoogle Scholar
  111. 111.
    Kleinman L, Bylander DM (1991) Phys Rev Lett 48: 1425.CrossRefGoogle Scholar
  112. 112.
    Gonze X, Stumpf R, Scheffler M (1991) Phys Rev B 44: 8503.CrossRefGoogle Scholar
  113. 113.
    Ordejón P, Artacho E, Soler JM (1996) Phys Rev B 53: R10441.CrossRefGoogle Scholar
  114. 114.
    Moll N, Bockstedte M, Fuchs M, Pehlke E, Scheffler M (1995) Phys Rev B 52: 2550.CrossRefGoogle Scholar
  115. 115.
    Lee IH, Martin RM (1997) Phys Rev B 56: 7197.CrossRefGoogle Scholar
  116. 116.
    Cheng C (2003) Phys Rev B 67: 134109.CrossRefGoogle Scholar
  117. 117.
    Mujica A, Rubio A, Munoz A, Needs RJ (2003) Rev Mod Phys 75: 863.CrossRefGoogle Scholar
  118. 118.
    Gaál-Nagy K, Pavone P, Strauch D (2004) Phys Rev B 69: 134112.CrossRefGoogle Scholar
  119. 119.
    Poswal HK, Garg N, Sharma SM, Busetto E, Sikka SK, Gundiah G, Deepak FL, Rao CNR (2005) J Nanosci Nanotech 5: 729.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Departamento de Física, ICEXUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Escola PolitécnicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations