Advertisement

Multiscale Modeling of Contact-Induced Plasticity in Nanocrystalline Metals

  • Virginie DupontEmail author
  • Frederic Sansoz
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 9)

Abstract

Predicting the integrity of metallic thin films deposited on semiconductors for microelectromechanical systems (MEMS) applications requires a precise understanding of surface effects on plasticity in materials with nano-sized grains. Experimentally, the use of nanoscale contact probes has been very successful to characterize the dependence of flow stress on mean grain size in nanocrystalline metals. From atomistic simulations, several models of plastic yielding for metal indentation have also been proposed based on the nucleation and propagation of lattice dislocations, and their interaction with grain boundaries beneath penetrating tips. However, model refinement is needed to include the characteristics of materials whose grain size is much smaller than the typical plastic zones found in contact experiments. Particularly, cooperative deformation processes mediated by grain boundaries, such as grain rotation, deformation twinning, and stress-driven grain coarsening, can simultaneously emerge for very small grain sizes (< 20 nm), thus making a predictive understanding of plastic yielding elusive. This chapter summarizes our recent progress in using multiscale modeling to gain fundamental insight into the underlying mechanisms of surface plasticity in nanocrystalline face-centered cubic metals deformed by nanoscale contact probes. Two numerical approaches to model contact-induced plasticity in nanocrystalline materials, the quasicontinuum method and parallel molecular dynamics simulation, are reviewed. Using these techniques, we discuss the role of a grain boundary network on the incipient plasticity of nanocrystalline Al films deformed by wedge-like cylindrical tips, as well as the processes of stress-driven grain growth in nanocrystalline films subjected to nanoindentation

Keywords

Nanoindentation Nanocrystalline metal Atomistic simulation 

Notes

Acknowledgment

Support from National Science Foundation CAREER program (grant no DMR-0747658) and the computational resources provided by the Vermont Advanced Computing Center, which is supported by NASA (grant no NNX 06AC88G), are gratefully acknowledged.

References

  1. 1.
    Basrour, S. and Robert, L. (2000) Mater. Sci. Eng. A 288: 270–274.CrossRefGoogle Scholar
  2. 2.
    Gobet, J., Cardot, F., Bergqvist, J. and Rudolf, F. (1993) J. Micromech. Microeng. 3: 123–130.CrossRefGoogle Scholar
  3. 3.
    Larsen, K.P., et al. (2003) Sens. Actuators A 103: 156–164.CrossRefGoogle Scholar
  4. 4.
    Martinez, S., et al. (2002) Sens. Actuators A 99: 41–44.CrossRefGoogle Scholar
  5. 5.
    Pasa, A.A. and Schwarzacher, W. (1999) Phys. Stat. Sol. A 173: 73.CrossRefGoogle Scholar
  6. 6.
    Krauss, A.R., et al. (2001) Diam. Relat. Mater. 10: 1952–1961.CrossRefGoogle Scholar
  7. 7.
    Tao, S. and Li, D.Y. (2006) Nanotechnology 17: 65–78.CrossRefGoogle Scholar
  8. 8.
    Schiotz, J. and Jacobsen, K.W. (2003) Science 301: 1357–1359.CrossRefGoogle Scholar
  9. 9.
    Trelewicz, J.R. and Schuh, C.A. (2007) Acta Materialia 55: 5948–5958.CrossRefGoogle Scholar
  10. 10.
    Chang, S.Y. and Chang, T.K. (2007) J. Appl. Phys. 101: 033507.CrossRefGoogle Scholar
  11. 11.
    Tsuchiya, T., Tabata, O., Sakata, J. and Taga, Y. (1996) IEEJ Trans. 116: 441.Google Scholar
  12. 12.
    Sharpe, W.N., Yuan, B. and Edwards, R.L. (1997) J. Microelectromech. Syst. 6: 193–199.CrossRefGoogle Scholar
  13. 13.
    Chasiotis, I. and Knauss, W.G. (2002) Exp. Mech. 42: 51–57.CrossRefGoogle Scholar
  14. 14.
    Hemker, K.J. and Sharpe, W.N. (2007) Annu. Rev. Mater. Res. 37: 93–126.CrossRefGoogle Scholar
  15. 15.
    Espinosa, H.D., Prorok, B.C. and Fischer, M. (2003) J. Mech. Phys. Solids 51: 47–67.CrossRefGoogle Scholar
  16. 16.
    Nieman, G.W., Weertman, J.R. and Siegel, R.W. (1989) Scripta Metall. 23: 2013–2018.CrossRefGoogle Scholar
  17. 17.
    Elsherik, A.M., Erb, U., Palumbo, G. and Aust, K.T. (1992) Scripta Metall. Mater. 27: 1185–1188.CrossRefGoogle Scholar
  18. 18.
    Fougere, G.E., Weertman, J.R. and Siegel, R.W. (1995) Nanostruct. Mater. 5: 127–134.CrossRefGoogle Scholar
  19. 19.
    Qin, X.Y., Wu, X.J. and Zhang, L.D. (1995) Nanostruct. Mater. 5: 101–110.CrossRefGoogle Scholar
  20. 20.
    Farhat, Z.N., Ding, Y., Northwood, D.O. and Alpas, A.T. (1996) Mater. Sci. Eng. A 206: 302–313.CrossRefGoogle Scholar
  21. 21.
    Malow, T.R., Koch, C.C., Miraglia, P.Q. and Murty, K.L. (1998) Mater. Sci. Eng. A 252: 36–43.CrossRefGoogle Scholar
  22. 22.
    Sanders, P.G., Eastman, J.A. and Weertman, J.R. (1997) Acta Mater. 45: 4019–4025.CrossRefGoogle Scholar
  23. 23.
    Gang, T. and Sansoz, F. (2007) Unpublished Research.Google Scholar
  24. 24.
    Minor, A.M., et al. (2006) Nat. Mater. 5: 697–702.CrossRefGoogle Scholar
  25. 25.
    Yang, B. and Vehoff, H. (2007) Acta Materialia 55: 849–856.CrossRefGoogle Scholar
  26. 26.
    Andrievski, R.A., Kalinnikov, G.V., Jauberteau, J. and Bates, J. (2000) J. Mater. Sci. 35: 2799–2806.CrossRefGoogle Scholar
  27. 27.
    Van Vliet, K.J., Tsikata, S. and Suresh, S. (2003) Appl. Phys. Lett. 83: 1441–1443.CrossRefGoogle Scholar
  28. 28.
    Chen, M.W., et al. (2003) Science 300: 1275–1277.CrossRefGoogle Scholar
  29. 29.
    Jin, M., Minor, A.M., Stach, E.A. and Morris, J.W. (2004) Acta Materialia 52: 5381–5387.CrossRefGoogle Scholar
  30. 30.
    Zhang, K., Weertman, J.R. and Eastman, J.A. (2004) Appl. Phys. Lett. 85: 5197–5199.CrossRefGoogle Scholar
  31. 31.
    Zhang, K., Weertman, J.R. and Eastman, J.A. (2005) Appl. Phys. Lett. 87: 061921.CrossRefGoogle Scholar
  32. 32.
    Gianola, D.S., et al. (2006) Acta Materialia 54: 2253–2263.CrossRefGoogle Scholar
  33. 33.
    Hall, E.O. (1951) Proc. Phys. Soc. B 64: 747–753.CrossRefGoogle Scholar
  34. 34.
    Petch, N.J. (1953) J. Iron Steel Inst. 174: 25–28.Google Scholar
  35. 35.
    Schiotz, J., Di Tolla, F.D. and Jacobsen, K.W. (1998) Nature 391: 561–563.CrossRefGoogle Scholar
  36. 36.
    Feichtinger, D., Derlet, P.M. and Van Swygenhoven, H. (2003) Phys. Rev. B 67: 024113.CrossRefGoogle Scholar
  37. 37.
    Ma, X.L. and Yang, W. (2003) Nanotechnology 14: 1208–1215.CrossRefGoogle Scholar
  38. 38.
    Lilleodden, E.T., Zimmerman, J.A., Foiles, S.M. and Nix, W.D. (2003) J. Mech. Phys. Solids 51: 901–920.CrossRefGoogle Scholar
  39. 39.
    Hasnaoui, A., Derlet, P.M. and Van Swygenhoven, H. (2004) Acta Materialia 52: 2251–2258.CrossRefGoogle Scholar
  40. 40.
    Jang, H. and Farkas, D. (2004) Mater. Res. Soc. Symp. Proc. 821: P8.17.1–P8.17.6.Google Scholar
  41. 41.
    Saraev, D. and Miller, R.E. (2005) Model. Simulat. Mater. Sci. Eng. 13: 1089–1099.CrossRefGoogle Scholar
  42. 42.
    Kim, K.J., Yoon, J.H., Cho, M.H. and Jang, H. (2006) Mater. Lett. 60: 3367–3372.CrossRefGoogle Scholar
  43. 43.
    Szlufarska, I., Nakano, A. and Vashishta, P. (2005) Science 309: 911–914.CrossRefGoogle Scholar
  44. 44.
    Dupont, V. and Sansoz, F. (2008) Acta Mater. 56: 6013–6026.CrossRefGoogle Scholar
  45. 45.
    Luan, B.Q., et al. (2006) Phys. Rev. E 74: 11.Google Scholar
  46. 46.
    Sansoz, F. and Dupont, V. (2006) Appl. Phys. Lett. 89: 111901.CrossRefGoogle Scholar
  47. 47.
    Sansoz, F. and Dupont, V. (2007) Mater. Sci. Eng. C 27: 1509–1513.CrossRefGoogle Scholar
  48. 48.
    Dupont, V. (2008) Ph.D. Thesis. University of Vermont.Google Scholar
  49. 49.
    Zimmerman, J.A., Gao, H.J. and Abraham, F.F. (2000) Model. Simulat. Mater. Sci. Eng. 8: 103–115.CrossRefGoogle Scholar
  50. 50.
    Plimpton, S. (1995) J. Comput. Phys. 117: 1–19.CrossRefGoogle Scholar
  51. 51.
    Miller, R.E. and Tadmor, E.B. (2002) J. Comput. Aid Mater. Des. 9: 203–239.CrossRefGoogle Scholar
  52. 52.
    Rapaport, D.C. (2004) The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge, UK, 549.Google Scholar
  53. 53.
    Hoover, W.G. (1985) Phys. Rev. A 31: 1695–1697.CrossRefGoogle Scholar
  54. 54.
    Shenoy, V.B., et al. (1999) J. Mech. Phys. Solids 47: 611–642.CrossRefGoogle Scholar
  55. 55.
    Sansoz, F. and Molinari, J.F. (2007) Thin Solid Films 515/6: 3158–3163.CrossRefGoogle Scholar
  56. 56.
    Johnson, K.L. (1985) Contact Mechanics. Cambridge University Press, Cambridge, UK, 452.Google Scholar
  57. 57.
    Voronoi, G.F. (1908) J. Reine Undangew. Math. 134: 199–287.Google Scholar
  58. 58.
    Kelchner, C.L., Plimpton, S.J. and Hamilton, J.C. (1998) Phys. Rev. B 58: 11085–11088.CrossRefGoogle Scholar
  59. 59.
    Ackland, G.J. and Jones, A.P. (2006) Phys. Rev. B 73: 054104.CrossRefGoogle Scholar
  60. 60.
    Daw, M.S. and Baskes, M.I. (1983) Phys. Rev. Lett. 50: 1285–1288.CrossRefGoogle Scholar
  61. 61.
    Mishin, Y., Farkas, D., Mehl, M.J. and Papaconstantopoulos, D.A. (1999) Phys. Rev. B 59: 3393–3407.CrossRefGoogle Scholar
  62. 62.
    Voter, A.F. and Chen, S.P. (1987) Mater. Res. Soc. Symp. Proc. 82: 175.Google Scholar
  63. 63.
    Sansoz, F. and Molinari, J.F. (2005) Acta Materialia 53: 1931–1944.Google Scholar
  64. 64.
    Sansoz, F. and Molinari, J.F. (2004) Scripta Materialia 50: 1283–1288.CrossRefGoogle Scholar
  65. 65.
    Van Swygenhoven, H., Derlet, P.M. and Froseth, A.G. (2004) Nat. Mater. 3: 399–403.CrossRefGoogle Scholar
  66. 66.
    Zhang, H., Upmanyu, N. and Srolovitz, D.J. (2005) Acta Materialia 53: 79–86.CrossRefGoogle Scholar
  67. 67.
    Haslam, A.J., et al. (2001) Mater. Sci. Eng. A 318: 293–312.CrossRefGoogle Scholar
  68. 68.
    Huntington, H.B. and Seitz, F. (1942) Phys. Rev. 61: 315.CrossRefGoogle Scholar
  69. 69.
    Cahn, J.W., Mishin, Y. and Suzuki, A. (2006) Acta Materialia 54: 4953–4975.CrossRefGoogle Scholar
  70. 70.
    Cahn, J.W. and Taylor, J.E. (2004) Acta Materialia 52: 4887–4898.CrossRefGoogle Scholar
  71. 71.
    Gutkin, M.Y., Mikaelyan, K.N. and Ovid’ko, I.A. (2008) Scripta Materialia 58: 850–853.CrossRefGoogle Scholar
  72. 72.
    Gutkin, M.Y. and Ovid’ko, I.A. (2005) Appl. Phys. Lett. 87: 251916.CrossRefGoogle Scholar
  73. 73.
    Lu, G., Zhang, Q., Kioussis, N. and Kaxiras, E. (2001) Phys. Rev. Lett. 8709: 095501.CrossRefGoogle Scholar
  74. 74.
    Lu, G., et al. (2002) Phys. Rev. B 65: 064102.CrossRefGoogle Scholar
  75. 75.
    Elsener, A., Politano, O., Derlet, P.M. and Van Swygenhoven, H. (2008) Model. Simulat. Mater. Sci. Eng. 16: 025006.CrossRefGoogle Scholar
  76. 76.
    Chou, S.Y., Krauss, P.R. and Renstrom, P.J. (1996) J. Vac. Sci. Technol. B 14: 4129–4133.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of EngineeringUniversity of VermontBurlingtonUSA
  2. 2.School of Engineering and Materials Science ProgramUniversity of VermontBurlingtonUSA

Personalised recommendations