Advertisement

Out of Many, One: Modeling Schemes for Biopolymer and Biofibril Networks

  • E.A. Sander
  • A.M. Stein
  • M.J. Swickrath
  • V.H. Barocas
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 9)

Abstract:

Tissues are structurally and compositionally complex materials that must function in a coordinated fashion at multiple length scales. Many of the structural proteins in soft tissues and in cells form biopolymer networks that provide mechanical benefits and coordinate cell-directed physiological activities. Complicated phenomena operate at multiple scales and are governed to varying degrees by the properties of networks; thus, mechanical models are a necessary tool to unravel the relationships among individual network components and to determine the aggregate properties and functions of cells and tissues. In this work, we review major biopolymers, their function, and the general mechanical behavior of biopolymer gels. We then discuss some network imaging techniques and methods for constructing and modeling networks /in silico/ – including multi-scale methods. Finally, we return to the specific biopolymers, including actin, microtubules, intermediate filaments, spectrin, collagen I and IV, laminin, fibronectin, and fibrin, and discuss what has been learned from the different models. Biopolymer network models, especially when combined with ever-improving experimental methods, have the potential to answer many fundamental questions in mechanobiology

Keywords

Collagen Actin Multi-scale 

REFERENCES

  1. 1.
    V. Vogel and G. Baneyx, “The tissue engineering puzzle: a molecular perspective,” Annu. Rev. Biomed. Eng., vol. 5, pp. 441–463, 2003.CrossRefGoogle Scholar
  2. 2.
    B. I. Shraiman, “Mechanical feedback as a possible regulator of tissue growth,” Proc. Natl. Acad. Sci. USA, vol. 102, pp. 3318–3323, Mar 1, 2005.CrossRefGoogle Scholar
  3. 3.
    Z. H. Syedain, J. S. Weinberg and R. T. Tranquillo, “Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue,” Proc. Natl. Acad. Sci. USA, vol. 105, pp. 6537–6542, May 6, 2008.CrossRefGoogle Scholar
  4. 4.
    F. Grinnell, “Fibroblast biology in three-dimensional collagen matrices,” Trends Cell Biol., vol. 13, pp. 264–269, May, 2003.CrossRefGoogle Scholar
  5. 5.
    F. Grinnell and C. H. Ho, “Transforming growth factor beta stimulates fibroblast-collagen matrix contraction by different mechanisms in mechanically loaded and unloaded matrices,” Exp. Cell Res., vol. 273, pp. 248–255, Feb 15, 2002.CrossRefGoogle Scholar
  6. 6.
    M. Eastwood, V. C. Mudera, D. A. McGrouther and R. A. Brown, “Effect of precise mechanical loading on fibroblast populated collagen lattices: morphological changes,” Cell Motil. Cytoskeleton, vol. 40, pp. 13–21, 1998.CrossRefGoogle Scholar
  7. 7.
    S. Nakagawa, P. Pawelek and F. Grinnell, “Long-term culture of fibroblasts in contracted collagen gels: effects on cell growth and biosynthetic activity,” J. Invest. Dermatol., vol. 93, pp. 792–798, Dec, 1989.CrossRefGoogle Scholar
  8. 8.
    F. Grinnell, M. Zhu, M. A. Carlson and J. M. Abrams, “Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue,” Exp. Cell Res., vol. 248, pp. 608–619, May 1, 1999.CrossRefGoogle Scholar
  9. 9.
    M. Kjaer, “Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading,” Physiol. Rev., vol. 84, pp. 649–698, Apr, 2004.CrossRefGoogle Scholar
  10. 10.
    C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J. K. Suh and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res., vol. 24, pp. 39–73, 2005.CrossRefGoogle Scholar
  11. 11.
    R. L. Gleason and J. D. Humphrey, “A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover,” J. Vasc. Res., vol. 41, pp. 352–363, Jul–Aug, 2004.CrossRefGoogle Scholar
  12. 12.
    J. Khoshnoodi, V. Pedchenko and B. G. Hudson, “Mammalian collagen IV,” Microsc. Res. Tech., vol. 71, pp. 357–370, May, 2008.CrossRefGoogle Scholar
  13. 13.
    C. Frieden, “Polymerization of actin: mechanism of the Mg2+-induced process at pH 8 and 20 degrees C,” Proc. Natl. Acad. Sci. USA, vol. 80, pp. 6513–6517, Nov, 1983.CrossRefGoogle Scholar
  14. 14.
    C. Frieden, “Actin and tubulin polymerization: the use of kinetic methods to determine mechanism,” Annu. Rev. Biophys. Biophys. Chem., vol. 14, pp. 189–210, 1985.CrossRefGoogle Scholar
  15. 15.
    C. Neidl and J. Engel, “Exchange of ADP, ATP and 1: N6-ethenoadenosine 5'-triphosphate at G-actin. Equilibrium and kinetics,” Eur. J. Biochem., vol. 101, pp. 163–169, Nov 1, 1979.CrossRefGoogle Scholar
  16. 16.
    A. Wegner, “Spontaneous fragmentation of actin filaments in physiological conditions,” Nature, vol. 296, pp. 266–267, Mar 18, 1982.CrossRefGoogle Scholar
  17. 17.
    A. Wegner and P. Savko, “Fragmentation of actin filaments,” Biochemistry, vol. 21, pp. 1909–1913, Apr 13, 1982.CrossRefGoogle Scholar
  18. 18.
    A. Patkowski, W. Eimer, J. Seils, G. Schneider, B. M. Jackusch and T. Dorfmueller, “The molecular dimensions of G-actin in solution as studied by dynamic light scattering,” Biopolymers, vol. 30, pp. 1281–1287, 1990.CrossRefGoogle Scholar
  19. 19.
    H. Kojima, A. Ishijima and T. Yanagida, “Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation.” Proc. Natl. Acad. Sci. USA, vol. 91, pp. 12962, 1994.CrossRefGoogle Scholar
  20. 20.
    A. Ott, M. Magnasco, A. Simon and A. Libchaber, “Measurement of the persistence length of polymerized actin using fluorescence microscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, vol. 48, pp. R1642–R1645, Sep, 1993.Google Scholar
  21. 21.
    W. Kabsch and J. Vandekerckhove, “Structure and function of actin,” Annu. Rev. Biophys. Biomol. Struct., vol. 21, pp. 49–76, 1992.CrossRefGoogle Scholar
  22. 22.
    H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore and J. E. Darnell, Molecular Cell Biology, 4th ed. New York: W.H. Freeman & Company, 1999.Google Scholar
  23. 23.
    D. Boal, Mechanics of the Cell. Cambridge: Cambridge University Press, 2002, 406pp.Google Scholar
  24. 24.
    P. Cossart, “Actin-based motility of pathogens: the Arp2/3 complex is a central player,” Cell. Microbiol., vol. 2, pp. 195–205, Jun, 2000.CrossRefGoogle Scholar
  25. 25.
    M. K. Gardner and D. J. Odde, “Modeling of chromosome motility during mitosis,” Curr. Opin. Cell Biol., vol. 18, pp. 639–647, Dec, 2006.CrossRefGoogle Scholar
  26. 26.
    D. E. Ingber, “Tensegrity: the architectural basis of cellular mechanotransduction,” Annu. Rev. Physiol., vol. 59, pp. 575–599, 1997.CrossRefGoogle Scholar
  27. 27.
    D. Stamenovic and N. Wang, “Invited review: engineering approaches to cytoskeletal mechanics,” J. Appl. Physiol., vol. 89, pp. 2085–2090, Nov, 2000.Google Scholar
  28. 28.
    H. Herrmann, H. Bar, L. Kreplak, S. V. Strelkov and U. Aebi, “Intermediate filaments: from cell architecture to nanomechanics,” Nat. Rev. Mol. Cell Biol., vol. 8, pp. 562–573, Jul, 2007.CrossRefGoogle Scholar
  29. 29.
    D. E. Discher, R. Winardi, P. O. Schischmanoff, M. Parra, J. G. Conboy and N. Mohandas, “Mechanochemistry of protein 4.1’s spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening,” J. Cell Biol., vol. 130, pp. 897–907, Aug, 1995.CrossRefGoogle Scholar
  30. 30.
    C. Picart, P. Dalhaimer and D. E. Discher, “Actin protofilament orientation in deformation of the erythrocyte membrane skeleton,” Biophys. J., vol. 79, pp. 2987–3000, Dec,2000.CrossRefGoogle Scholar
  31. 31.
    D. E. Discher and N. Mohandas, “Kinematics of red cell aspiration by fluorescence-imaged microdeformation,” Biophys. J., vol. 71, pp. 1680–1694, Oct, 1996.CrossRefGoogle Scholar
  32. 32.
    K. E. Kadler, “Extracelluar matrix 1: fibril-forming collagens” Protein Prof., vol. 2, pp. 491–619, 1995.Google Scholar
  33. 33.
    P. Fratzl, Collagen: Structure and Mechanics. New York: Springer, 2008, 506 pp.Google Scholar
  34. 34.
    L. C. Junqueira, J. Carneiro and R. O. Kelley, Basic Histology, 9th ed. New York: McGraw-Hill, 1998.Google Scholar
  35. 35.
    F. H. Silver, J. W. Freeman and G. P. Seehra, “Collagen self-assembly and the development of tendon mechanical properties,” J. Biomech., vol. 36, pp. 1529–1553, Oct, 2003.CrossRefGoogle Scholar
  36. 36.
    A. O. Brightman, B. P. Rajwa, J. E. Sturgis, M. E. McCallister, J. P. Robinson and S. L. Voytik-Harbin, “Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro,” Biopolymers, vol. 54, pp. 222–234, Sep, 2000.CrossRefGoogle Scholar
  37. 37.
    K. E. Kadler, D. F. Holmes, J. A. Trotter and J. A. Chapman, “Collagen fibril formation,” Biochem. J., vol. 316 (Pt 1), pp. 1–11, May 15, 1996.Google Scholar
  38. 38.
    Y. L. Sun, Z. P. Luo, A. Fertala and K. N. An, “Direct quantification of the flexibility of type I collagen monomer,” Biochem. Biophys. Res. Commun., vol. 295, pp. 382–386, Jul 12, 2002.CrossRefGoogle Scholar
  39. 39.
    J. S. Graham, A. N. Vomund, C. L. Phillips and M. Grandbois, “Structural changes in human type I collagen fibrils investigated by force spectroscopy,” Exp. Cell Res., vol. 299, pp. 335–342, Oct 1, 2004.CrossRefGoogle Scholar
  40. 40.
    H. Miyazaki and K. Hayashi, “Tensile tests of collagen fibers obtained from the rabbit patellar tendon,” Biomed. Microdev., vol. 2, pp. 151–157, 1999.CrossRefGoogle Scholar
  41. 41.
    J. A. van der Rijt, K. O. van der Werf, M. L. Bennink, P. J. Dijkstra and J. Feijen, “Micromechanical testing of individual collagen fibrils,” Macromol. Biosci., vol. 6, pp. 697–702, Sep 15, 2006.CrossRefGoogle Scholar
  42. 42.
    Z. L. Shen, M. R. Dodge, H. Kahn, R. Ballarini and S. J. Eppell, “Stress-strain experiments on individual collagen fibrils,” Biophys. J., vol. 95, pp. 3956–3963, 2008.CrossRefGoogle Scholar
  43. 43.
    L. Yang, K. O. van der Werf, C. F. Fitie, M. L. Bennink, P. J. Dijkstra and J. Feijen, “Mechanical properties of native and cross-linked type I collagen fibrils,” Biophys. J., vol. 94, pp. 2204–2211, Mar 15, 2008.CrossRefGoogle Scholar
  44. 44.
    D. J. S. Hulmes, “Collagen diversity, synthesis and assembly,” in Collagen: Structure and Mechanics, P. Fratzl, Ed. New York: Springer, 2008, pp. 15–47.Google Scholar
  45. 45.
    G. Orsini, A. Ruggeri, Jr, A. Mazzoni, V. Papa, M. Piccirilli, M. Falconi, R. Di Lenarda and L. Breschi, “Immunohistochemical identification of type I and type III collagen and chondroitin sulphate in human pre-dentine: a correlative FEI-SEM/TEM study,” Int. Endod. J., vol. 40, pp. 669–678, Sep, 2007.CrossRefGoogle Scholar
  46. 46.
    C. Guidry and F. Grinnell, “Studies on the mechanism of hydrated collagen gel reorganization by human skin fibroblasts,” J. Cell. Sci., vol. 79, pp. 67–81, Nov, 1985.Google Scholar
  47. 47.
    E. A. Sander and V. H. Barocas, “Biomimetic collagen tissues: collagenous tissue engineering and other applications,” in Collagen: Structure and Mechanics, P. Fratzl, Ed. New York: Springer, 2008, pp. 475–504.Google Scholar
  48. 48.
    P. D. Yurchenco and J. C. Schittny, “Molecular architecture of basement membranes,” FASEB J., vol. 4, pp. 1577–1590, Apr 1, 1990.Google Scholar
  49. 49.
    P. D. Yurchenco, “Assembly of basement membranes,” Ann. NY Acad. Sci., vol. 580, pp. 195–213, 1990.CrossRefGoogle Scholar
  50. 50.
    J. H. Miner and P. D. Yurchenco, “Laminin functions in tissue morphogenesis,” Annu. Rev. Cell Dev. Biol., vol. 20, pp. 255–284, 2004.CrossRefGoogle Scholar
  51. 51.
    R. B. Colvin, “Fibronectin in wound healing,” in Fibronectin, D. F. Mosher, Ed. Newyork: Academic press, pp. 213–254, 1989.Google Scholar
  52. 52.
    I. Wierzbicka-Patynowski and J. E. Schwarzbauer, “The ins and outs of fibronectin matrix assembly,” J. Cell. Sci., vol. 116, pp. 3269–3276, Aug 15, 2003.CrossRefGoogle Scholar
  53. 53.
    M. K. Magnusson and D. F. Mosher, “Fibronectin: structure, assembly, and cardiovascular implications,” Arterioscler. Thromb. Vasc. Biol., vol. 18, pp. 1363–1370, Sep, 1998.Google Scholar
  54. 54.
    W. E. Fowler, R. R. Hantgan, J. Hermans and H. P. Erickson, “Structure of the fibrin protofibril,” Proc. Natl. Acad. Sci. USA, vol. 78, pp. 4872–4876, Aug, 1981.CrossRefGoogle Scholar
  55. 55.
    J. W. Weisel and C. Nagaswami, “Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled,” Biophys. J., vol. 63, pp. 111–128, Jul, 1992.CrossRefGoogle Scholar
  56. 56.
    M. W. Mosesson, “Fibrinogen and fibrin polymerization: appraisal of the binding events that accompany fibrin generation and fibrin clot assembly,” Blood Coagul. Fibrin., vol. 8, pp. 257–267, Jul, 1997.CrossRefGoogle Scholar
  57. 57.
    M. R. Neidert, E. S. Lee, T. R. Oegema and R. T. Tranquillo, “Enhanced fibrin remodeling in vitro with TGF-beta1, insulin and plasmin for improved tissue-equivalents,” Biomaterials, vol. 23, pp. 3717–3731, Sep, 2002.CrossRefGoogle Scholar
  58. 58.
    E. D. Grassl, T. R. Oegema and R. T. Tranquillo, “Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent,” J. Biomed. Mater. Res., vol. 60, pp. 607–612, Jun 15, 2002.CrossRefGoogle Scholar
  59. 59.
    V. H. Barocas, A. G. Moon and R. T. Tranquillo, “The fibroblast-populated collagen microsphere assay of cell traction force – Part 2: Measurement of the cell traction parameter,” J. Biomech. Eng., vol. 117, pp. 161–170, May, 1995.CrossRefGoogle Scholar
  60. 60.
    M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. A. Matsudaira and D. A. Weitz, “Scaling of F-actin network rheology to probe single filament elasticity and dynamics,” Phys. Rev. Lett., vol. 93, pp. 188102, Oct 29, 2004.CrossRefGoogle Scholar
  61. 61.
    O. Lieleg, M. M. Claessens, C. Heussinger, E. Frey and A. R. Bausch, “Mechanics of bundled semiflexible polymer networks,” Phys. Rev. Lett., vol. 99, pp. 088102, Aug 24, 2007.CrossRefGoogle Scholar
  62. 62.
    P. L. Chandran and V. H. Barocas, “Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse,” J. Biomech. Eng., vol. 126, pp. 152–166, Apr, 2004.CrossRefGoogle Scholar
  63. 63.
    D. C. Morse, “Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 1. Model and stress tensor,” Macromolecules, vol. 31, pp. 7030–7043, 1998.CrossRefGoogle Scholar
  64. 64.
    D. C. Morse, “Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response,” Macromolecules, vol. 31, pp. 7044–7067, 1998.CrossRefGoogle Scholar
  65. 65.
    D. M. Knapp, V. H. Barocas, A. G. Moon, K. Yoo, L. R. Petzold and R. T. Tranquillo, “Rheology of reconstituted type I collagen gel in confined compression,” J. Rheol., vol. 41, pp. 971–993, 1997.CrossRefGoogle Scholar
  66. 66.
    C. F. Schmidt, M. Baermann, G. Isenberg and E. Sackmann, “Chain dynamics, mesh size, and diffusive transport in networks of polymerized actin: a quasielastic light scattering and microfluorescence study,” Macromolecules, vol. 22, pp. 3638–3649, 1989.CrossRefGoogle Scholar
  67. 67.
    B. Wagner, R. Tharmann, I. Haase, M. Fischer and A. R. Bausch, “Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties,” Proc. Natl. Acad. Sci. USA, vol. 103, pp. 13974–13978, Sep 19, 2006.CrossRefGoogle Scholar
  68. 68.
    J. H. Shin, M. L. Gardel, L. Mahadevan, P. Matsudaira and D. A. Weitz, “Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro,” Proc. Natl. Acad. Sci. USA, vol. 101, pp. 9636–9641, Jun 29, 2004.CrossRefGoogle Scholar
  69. 69.
    P. A. Janmey, M. E. McCormick, S. Rammensee, J. L. Leight, P. C. Georges and F. C. MacKintosh, “Negative normal stress in semiflexible biopolymer gels,” Nat. Mater., vol. 6, pp. 48–51, Jan, 2007.CrossRefGoogle Scholar
  70. 70.
    C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky and P. A. Janmey, “Nonlinear elasticity in biological gels,” Nature, vol. 435, pp. 191–194, May 12, 2005.CrossRefGoogle Scholar
  71. 71.
    B. A. Roeder, K. Kokini, J. E. Sturgis, J. P. Robinson and S. L. Voytik-Harbin, “Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure,” J. Biomech. Eng., vol. 124, pp. 214–222, Apr, 2002.CrossRefGoogle Scholar
  72. 72.
    T. T. Tower, M. R. Neidert and R. T. Tranquillo, “Fiber alignment imaging during mechanical testing of soft tissues,” Ann. Biomed. Eng., vol. 30, pp. 1221–1233, Nov–Dec, 2002.CrossRefGoogle Scholar
  73. 73.
    P. L. Chandran and V. H. Barocas, “Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior,” J. Biomech. Eng., vol. 128, pp. 259–270, Apr, 2006.CrossRefGoogle Scholar
  74. 74.
    P. L. Chandran and V. H. Barocas, “Deterministic material-based averaging theory model of collagen gel micromechanics,” J. Biomech. Eng., vol. 129, pp. 137–147, Apr, 2007.CrossRefGoogle Scholar
  75. 75.
    B. A. Roeder, K. Kokini, J. P. Robinson and S. L. Voytik-Harbin, “Local, three-dimensional strain measurements within largely deformed extracellular matrix constructs,” J. Biomech. Eng., vol. 126, pp. 699–708, Dec, 2004.CrossRefGoogle Scholar
  76. 76.
    Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. New York: Springer-Verlag, 1993, 568 pp.Google Scholar
  77. 77.
    L. Krishnan, J. A. Weiss, M. D. Wessman and J. B. Hoying, “Design and application of a test system for viscoelastic characterization of collagen gels,” Tissue Eng., vol. 10, pp. 241–252, Jan–Feb, 2004.CrossRefGoogle Scholar
  78. 78.
    T. S. Girton, V. H. Barocas and R. T. Tranquillo, “Confined compression of a tissue-equivalent: collagen fibril and cell alignment in response to anisotropic strain,” J. Biomech. Eng., vol. 124, pp. 568–575, Oct, 2002.CrossRefGoogle Scholar
  79. 79.
    V. C. Mow, S. C. Kuei, W. M. Lai and C. G. Armstrong, “Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments,” J. Biomech. Eng., vol. 102, pp. 73–84, 1980.CrossRefGoogle Scholar
  80. 80.
    J. K. Suh, Z. Li and S. L. Woo, “Dynamic behavior of a biphasic cartilage model under cyclic compressive loading,” J. Biomech., vol. 28, pp. 357–364, 1995.CrossRefGoogle Scholar
  81. 81.
    G. C. Wood and M. K. Keech, “The formation of fibrils from collagen solutions. 1. The effect of experimental conditions: kinetic and electron-microscope studies,” Biochem. J., vol. 75, pp. 588–598, Jun, 1960.Google Scholar
  82. 82.
    C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J., vol. 92, pp. 2212–2222, Mar 15, 2007.CrossRefGoogle Scholar
  83. 83.
    A. M. Stein, D. A. Vader, L. M. Jawerth, D. A. Weitz and L. M. Sander, “An algorithm for extracting the network geometry of 3d collagen gels,” J. Microscopy, vol. 232, pp. 463–475, 2008.CrossRefGoogle Scholar
  84. 84.
    A. M. Stein, D. A. Vader, D. A. Weitz and L. M. Sander, “The micromechanics of collagen I gels,” Arxiv, vol. 0807.2805, 2008.Google Scholar
  85. 85.
    S. Hsu, A. M. Jamieson, and J. Blackwell, “Viscoelastic studies of extracellular matrix interactions in a model native collagen gel system,” Biorheology, vol. 31, pp. 21–36, 1994.Google Scholar
  86. 86.
    R. M. Kuntz and W. M. Saltzman, “Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration,” Biophys. J., vol 72, pp. 1472–1480, 1997.Google Scholar
  87. 87.
    J. D. Humphrey, Cardiovascular Solid Mechanics. New York: Springer, 2002, 776pp.Google Scholar
  88. 88.
    C. F. Burgoyne, J. C. Downs, A. J. Bellezza and R. T. Hart, “Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues,” Invest. Ophthalmol. Vis. Sci., vol. 45, pp. 4388–4399, Dec, 2004.CrossRefGoogle Scholar
  89. 89.
    P. Bajcsy, S. C. Lee, A. Lin and R. Folberg, “Three-dimensional volume reconstruction of extracellular matrix proteins in uveal melanoma from fluorescent confocal laser scanning microscope images,” J. Microsc., vol. 221, pp. 30–45, Jan, 2006.CrossRefGoogle Scholar
  90. 90.
    P. J. Elbischger, H. Bischof, P. Regitnig and G. A. Holzapfel, “Automatic analysis of collagen fiber orientation in the outermost layer of human arteries,” Pattern Anal. Appl., vol. 7, pp. 269–284, 2004.Google Scholar
  91. 91.
    B. van Rietbergen, S. Majumdar, W. Pistoia, D. C. Newitt, M. Kothari, A. Laib and P. Ruegsegger, “Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images,” Technol. Health Care, vol. 6, pp. 413–420, Dec, 1998.Google Scholar
  92. 92.
    B. Van Rietbergen, R. Muller, D. Ulrich, P. Ruegsegger and R. Huiskes, “Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions,” J. Biomech., vol. 32, pp. 443–451, Apr, 1999.CrossRefGoogle Scholar
  93. 93.
    H. H. Bayraktar and T. M. Keaveny, “Mechanisms of uniformity of yield strains for trabecular bone,” J. Biomech., vol. 37, pp. 1671–1678, Nov, 2004.CrossRefGoogle Scholar
  94. 94.
    R. Muller, A. Nazarian, P. Schneider, M. Stauber, P. Thurner, G. H. van Lenthe and R. Voide, “Functional micro-imaging at the interface of bone mechanics and biology,” in Mechanics of Biological Tissue G. A. Holzapfel and R. W. Odgen, Eds. Germany: Springer-Verlag, 2006, pp. 473–487.CrossRefGoogle Scholar
  95. 95.
    C. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Exp., vol. 9, pp. 780–790, 2001.CrossRefGoogle Scholar
  96. 96.
    M. Brezinski and J. Fujimoto, “Optical coherence tomography: high-resolution imaging innontransparent tissue,” IEEE J. Select. Topics Quant. Electron., vol. 5, pp. 1185–1192, 1999.CrossRefGoogle Scholar
  97. 97.
    J. Rogowska, N. A. Patel, J. G. Fujimoto and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart, vol. 90, pp. 556–562, May, 2004.CrossRefGoogle Scholar
  98. 98.
    M. K. Al-Qaisi and T. Akkin, “Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing,” Opt. Express, vol. 16, pp. 13032–13041, 2008.CrossRefGoogle Scholar
  99. 99.
    W. Sun, A. Darling, B. Starly and J. Nam, “Computer-aided tissue engineering: overview, scope and challenges,” Biotechnol. Appl. Biochem., vol. 39, pp. 29–47, Feb, 2004.CrossRefGoogle Scholar
  100. 100.
    P. Friedl and E. Brocker, “Biological confocal reflection microscopy: reconstruction of three-dimensional extracellular matrix, cell migration, and matrix reorganization,” in Image Analysis: Methods and Applications D. Hader, Ed.. Boca Raton: CRC Press, 2001, pp. 9–22.Google Scholar
  101. 101.
    S. L. Voytik-Harbin, B. A. Roeder, J. E. Sturgis, K. Kokini and J. P. Robinson, “Simultaneous mechanical loading and confocal reflection microscopy for three-dimensional microbiomechanical analysis of biomaterials and tissue constructs,” Microsc. Microanal., vol. 9, pp. 74–85, Feb. 2003.CrossRefGoogle Scholar
  102. 102.
    J. Liu, G. H. Koenderink, K. E. Kasza, F. C. Mackintosh and D. A. Weitz, “Visualizing the strain field in semiflexible polymer networks: strain fluctuations and nonlinear rheology of F-actin gels,” Phys. Rev. Lett., vol. 98, pp. 198304, May 11, 2007.CrossRefGoogle Scholar
  103. 103.
    P. D. Yurchenco and H. Furthmayr, “Self-assembly of basement membrane collagen,” Biochemistry, vol. 23, pp. 1839–1850, Apr 10, 1984.CrossRefGoogle Scholar
  104. 104.
    A. S. Charonis, E. C. Tsilibary, P. D. Yurchenco and H. Furthmayr, “Binding of laminin to type IV collagen: a morphological study,” J. Cell Biol., vol. 100, pp. 1848–1853, Jun, 1985.CrossRefGoogle Scholar
  105. 105.
    D. M. Shotton, B. E. Burke and D. Branton, “The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies,” J. Mol. Biol., vol. 131, pp. 303–329, Jun 25, 1979.CrossRefGoogle Scholar
  106. 106.
    E. Katayama, “Quick-freeze deep-etch electron microscopy of the actin-heavy meromyosin complex during the in vitro motility assay,” J. Mol. Biol., vol. 278, pp. 349–367, May 1, 1998.CrossRefGoogle Scholar
  107. 107.
    D. Overby, J. Ruberti, H. Gong, T. F. Freddo and M. Johnson, “Specific hydraulic conductivity of corneal stroma as seen by quick-freeze/deep-etch,” J. Biomech. Eng., vol. 123, pp. 154–161, Apr, 2001.CrossRefGoogle Scholar
  108. 108.
    S. Erlandsen, C. Frethem and Y. Chen, “Field emission scanning electron microscopy (FESEM) Entering the 21st century: nanometer resolution and molecular topography of cell structure,” J. Histotechnol., vol. 23, pp. 249–259, 2000.Google Scholar
  109. 109.
    Y. Chen, L. Zardi and D. M. P. Peters, “high-resolution cryo-scanning electron microscopy study of the macromolecular structure of fibronectin fibrils,” Scanning, vol. 19, pp. 349–355, 1997.Google Scholar
  110. 110.
    B. F. McEwen and M. Marko, “The emergence of electron tomography as an important tool for investigating cellular ultrastructure,” J. Histochem. Cytochem., vol. 49, pp. 553–564, May, 2001.Google Scholar
  111. 111.
    C. Baldock, C. J. Gilpin, A. J. Koster, U. Ziese, K. E. Kadler, C. M. Kielty and D. F. Holmes, “Three-dimensional reconstructions of extracellular matrix polymers using automated electron tomography,” J. Struct. Biol., vol. 138, pp. 130–136, Apr–May, 2002.CrossRefGoogle Scholar
  112. 112.
    P. L. Kronick and M. S. Sacks, “Quantification of vertical-fiber defect in cattle hide by small-angle light scattering,” Connect. Tissue Res., vol. 27, pp. 1–13, 1991.CrossRefGoogle Scholar
  113. 113.
    T. T. Tower and R. T. Tranquillo, “Alignment maps of tissues: I. Microscopic elliptical polarimetry,” Biophys. J., vol. 81, pp. 2954–2963, Nov, 2001.CrossRefGoogle Scholar
  114. 114.
    K. L. Billiar and M. S. Sacks, “A method to quantify the fiber kinematics of planar tissues under biaxial stretch,” J. Biomech., vol. 30, pp. 753–756, Jul, 1997.CrossRefGoogle Scholar
  115. 115.
    M. R. Neidert and R. T. Tranquillo, “Tissue-engineered valves with commissural alignment,” Tissue Eng., vol. 12, pp. 891–903, Apr, 2006.CrossRefGoogle Scholar
  116. 116.
    B. C. Isenberg, C. Williams and R. T. Tranquillo, “Small-diameter artificial arteries engineered in vitro,” Circ. Res., vol. 98, pp. 25–35, Jan 6, 2006.CrossRefGoogle Scholar
  117. 117.
    E. A. Sander, T. Stylianopoulos, R. T. Tranquillo and V. H. Barocas, “Image-based biomechanics of collagen-based tissue equivalents: multiscale models compared to fiber alignment predicted by polarimetric imaging,” IEEE Eng. Med. Biol. Mag., vol. 28, pp. 10–18, 2009.CrossRefGoogle Scholar
  118. 118.
    C. Jhun, M.C. Evans, V. H. Barocas and R. T. Tranquillo, “Planar biaxial mechanical behavior of bioartificial tissues possessing prescribed fiber alignment,” J. Biomech. Eng., vol. 131:081006, 2009.Google Scholar
  119. 119.
    E. E. Underwood, Quantitative Stereology. Reading, MA: Addison-Wesley, 1970, 274pp.Google Scholar
  120. 120.
    C. Howard and M. Reed, Unbiased Stereology: Three-Dimensional Measurement in Microscopy. New York: Springer, 1998.Google Scholar
  121. 121.
    S. C. Cowin, “Wolff’s law of trabecular architecture at remodeling equilibrium,” J. Biomech. Eng., vol. 108, pp. 83–88, Feb, 1986.CrossRefGoogle Scholar
  122. 122.
    A. Odgaard, “Three-dimensional methods for quantification of cancellous bone architecture,” Bone, vol. 20, pp. 315–328, 1997.CrossRefGoogle Scholar
  123. 123.
    V. H. Barocas and R. T. Tranquillo, “An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance,” J. Biomech. Eng., vol. 119, pp. 137–145, May, 1997.CrossRefGoogle Scholar
  124. 124.
    T. P. Harrigan and R. W. Mann, “Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor,” J. Mat. Sci., vol. 19, pp. 761–767, 1984.CrossRefGoogle Scholar
  125. 125.
    E. A. Sander and V. H. Barocas, “Comparison of 2D fiber network orientation measurement methods,” J. Biomed. Mater. Res. A., vol. 88, pp. 322–331, 2008.Google Scholar
  126. 126.
    W. J. Karlon, J. W. Covell, A. D. McCulloch, J. J. Hunter and J. H. Omens, “Automated measurement of myofiber disarray in transgenic mice with ventricular expression of ras,” Anat. Rec., vol. 252, pp. 612–625, Dec, 1998.CrossRefGoogle Scholar
  127. 127.
    W. J. Karlon, P. P. Hsu, S. Li, S. Chien, A. D. McCulloch and J. H. Omens, “Measurement of orientation and distribution of cellular alignment and cytoskeletal organization,” Ann. Biomed. Eng., vol. 27, pp. 712–720, Nov–Dec, 1999.CrossRefGoogle Scholar
  128. 128.
    M. Yoshigi, E. B. Clark and H. J. Yost, “Quantification of stretch-induced cytoskeletal remodeling in vascular endothelial cells by image processing,” Cytometry A., vol. 55, pp. 109–118, Oct, 2003.CrossRefGoogle Scholar
  129. 129.
    W. M. Petroll, H. D. Cavanagh, P. Barry, P. Andrews and J. V. Jester, “Quantitative analysis of stress fiber orientation during corneal wound contraction,” J. Cell. Sci., vol. 104 (Pt 2), pp. 353–363, Feb, 1993.Google Scholar
  130. 130.
    B. Pourdeyhimi and R. Dent, “Measuring fiber orientation in nonwovens: Part II: Direct tracking,” Text. Res. J., vol. 66, pp. 747–753, 1996.CrossRefGoogle Scholar
  131. 131.
    J. Wu, B. Rajwa, D. L. Filmer, C. M. Hoffmann, B. Yuan, C. Chiang, J. Sturgis and J. P. Robinson, “Automated quantification and reconstruction of collagen matrix from 3D confocal datasets,” J. Microsc., vol. 210, pp. 158–165, May, 2003.CrossRefGoogle Scholar
  132. 132.
    J. Wu, B. Rajwa, D. L. Filmer, C. M. Hoffmann, B. Yuan, C. S. Chiang, J. Sturgis and J. P. Robinson, “Analysis of orientations of collagen fibers by novel fiber-tracking software,” Microsc. Microanal., vol. 9, pp. 574–580, Dec, 2003.Google Scholar
  133. 133.
    Y. Xia and K. Elder, “Quantification of the graphical details of collagen fibrils in transmission electron micrographs,” J. Microsc., vol. 204, pp. 3–16, Oct, 2001.CrossRefGoogle Scholar
  134. 134.
    J. P. Marquez, “Fourier analysis and automated measurement of cell and fiber angular orientation distributions.” Int. J. Solids Struct., vol. 43, pp. 6413–6423, 2006.CrossRefGoogle Scholar
  135. 135.
    E. Ghassemieh, M. Acar and H. Versteeg, “Microstructural analysis of non-woven fabric using scanning electron microscopy and image processing. Part 2: Application to hydroentangled fabrics.” Proc. Instn. Mech. Engrs. L., vol. 216, pp. 211–218, 2002.CrossRefGoogle Scholar
  136. 136.
    B. Xu and L. Yu, “Determining fiber orientation distribution in nonwovens with hough transform techniques,” Text. Res. J., vol. 67, pp. 563–571, 1997.Google Scholar
  137. 137.
    A. Takahashi, R. Kita, T. Shinozaki, K. Kubota and M. Kaibara, “Real space observation of three-dimensional network structure of hydrated fibrin gel,” Coll. Polym. Sci., vol. 281, pp. 832–838, 2003.CrossRefGoogle Scholar
  138. 138.
    R. C. Gonzalez, R. E. Woods and S. L. Eddins, Digital Image Processing using MATLAB. Upper Saddle River, NJ: Pearson Prentice Hall, 2004, 609pp.Google Scholar
  139. 139.
    L. J. Gibson and M. F. Ashby, Cellular Solids: Structures and Properties, 2nd ed. Oxford: Pergamon Press, 1997.Google Scholar
  140. 140.
    C. Heussinger and E. Frey, “Stiff polymers, foams, and fiber networks,” Phys. Rev. Lett., vol. 96, pp. 017802, Jan 13, 2006.CrossRefGoogle Scholar
  141. 141.
    C. Heussinger and E. Frey, “Role of architecture in the elastic response of semiflexible polymer and fiber networks,” Phys. Rev. E. Stat. Nonlin Soft Matter Phys., vol. 75, pp. 011917, Jan, 2007.Google Scholar
  142. 142.
    B. Pourdeyhimi, R. Ramanathan and R. Dent, “Measuring fiber orientation in nonwovens: Part I: Simulation,” Text. Res. J., vol. 66, pp. 713–722, 1996.CrossRefGoogle Scholar
  143. 143.
    D. A. Head, A. J. Levine and F. C. MacKintosh, “Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks,” Phys. Rev. E. Stat. Nonlin Soft Matter Phys., vol. 68, pp. 061907, Dec, 2003.Google Scholar
  144. 144.
    M. Kellomaki, J. Astrom and J. Timonen, “Rigidity and dynamics of random spring networks,” Phys. Rev. Lett., vol. 77, pp. 2730–2733, Sep 23, 1996.CrossRefGoogle Scholar
  145. 145.
    A. M. Sastry, C. Cheng and C. W. Wang, “Mechanics of stochastic fibrous networks,” J. Thermoplast. Compos. Mater., vol. 11, pp. 288–296, 1998.Google Scholar
  146. 146.
    C. W. Wang, L. Berhan and A. M. Sastry, “Structure, mechanics and failure of stochastic fibrous networks: Part I: Microscale considerations,” J. Eng. Mater. Technol., vol. 122, pp. 450–468, 2000.CrossRefGoogle Scholar
  147. 147.
    P. R. Onck, T. Koeman, T. van Dillen and E. van der Giessen, “Alternative explanation of stiffening in cross-linked semiflexible networks,” Phys. Rev. Lett., vol. 95, pp. 178102, Oct 21, 2005.CrossRefGoogle Scholar
  148. 148.
    B. Agoram and V. H. Barocas, “Coupled macroscopic and microscopic scale modeling of fibrillar tissues and tissue equivalents,” J. Biomech. Eng., vol. 123, pp. 362–369, Aug, 2001.CrossRefGoogle Scholar
  149. 149.
    T. Stylianopoulos and V. H. Barocas, “Volume-averaging theory for the study of the mechanics of collagen networks,” Comput. Methods Appl. Mech. Eng., 2007.Google Scholar
  150. 150.
    T. Stylianopoulos and V. H. Barocas, “Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls,” J. Biomech. Eng., vol. 129, pp. 611–618, Aug, 2007.CrossRefGoogle Scholar
  151. 151.
    N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, “Perspective on ‘‘Equation of state calculations by fast computing machines’,” J. Chem. Phys., vol. 21, pp. 1087–1092, 1953.CrossRefGoogle Scholar
  152. 152.
    W. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika, vol. 57, pp. 97–109, 1970.CrossRefGoogle Scholar
  153. 153.
    M. Allen and D. Tildesley, Computer Simulation of Liquids. USA: Oxford University Press, 1989.Google Scholar
  154. 154.
    D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics. New York: Cambridge University Press, 2005.CrossRefGoogle Scholar
  155. 155.
    F. J. Vesely, Computational Physics: An Introduction. New York: Kluwer Academic/Plenum Publishers, 2001.Google Scholar
  156. 156.
    J. Howard, Mechanics of Motor Proteins and the Cytoskeleton. Sunderland, MA: Sinauer Associates, 2001, 367pp.Google Scholar
  157. 157.
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics. New York: Oxford University Press, 1986.Google Scholar
  158. 158.
    F. C. MacKintosh, J. Kas and P. A. Janmey, “Elasticity of semiflexible biopolymer networks,” Phys. Rev. Lett., vol. 75, pp. 4425–4428, Dec 11, 1995.CrossRefGoogle Scholar
  159. 159.
    Y. Lanir, “Constitutive equations for fibrous connective tissues,” J. Biomech., vol. 16, pp. 1–12, 1983.CrossRefGoogle Scholar
  160. 160.
    K. L. Billiar and M. S. Sacks, “Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II – A structural constitutive model,” J. Biomech. Eng., vol. 122, pp. 327–335, Aug, 2000.CrossRefGoogle Scholar
  161. 161.
    P. M. Pinsky, D. van der Heide and D. Chernyak, “Computational modeling of mechanical anisotropy in the cornea and sclera,” J. Cataract Refract. Surg., vol. 31, pp. 136–145, Jan, 2005.CrossRefGoogle Scholar
  162. 162.
    Y. Lanir, “The rheological behavior of the skin: experimental results and a structural model,” Biorheology, vol. 16, pp. 191–202, 1979.Google Scholar
  163. 163.
    T. M. Quinn and V. Morel, “Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage,” Biomech. Model. Mechanobiol., vol. 6, pp. 73–82, Jan, 2007.CrossRefGoogle Scholar
  164. 164.
    H. Hatami-Marbini and R. Picu, “Scaling of nonaffine deformation in random semiflexible fiber networks,” Phys. Rev. E, vol. 77, pp. 62103, 2008.CrossRefGoogle Scholar
  165. 165.
    A. M. Pizzo, K. Kokini, L. C. Vaughn, B. Z. Waisner and S. L. Voytik-Harbin, “Extracellular matrix (ECM) microstructural composition regulates local cell-ECM biomechanics and fundamental fibroblast behavior: a multidimensional perspective,” J. Appl. Physiol., vol. 98, pp. 1909–1921, May, 2005.CrossRefGoogle Scholar
  166. 166.
    D. G. Hepworth, A. Steven-fountain, D. M. Bruce and J. F. Vincent, “Affine versus non-affine deformation in soft biological tissues, measured by the reorientation and stretching of collagen fibres through the thickness of compressed porcine skin,” J. Biomech., vol. 34, pp. 341–346, Mar, 2001.CrossRefGoogle Scholar
  167. 167.
    C. Heussinger, B. Schaefer and E. Frey, “Nonaffine rubber elasticity for stiff polymer networks,” Phys. Rev. E. Stat. Nonlin Soft Matter Phys., vol. 76, pp. 031906, Sep, 2007.Google Scholar
  168. 168.
    Q. Wen, A. Basu, J. P. Winer, A. Yodh and P. A. Janmey, “Local and global deformations in a strain-stiffening fibrin gel,” New J. Phys., vol. 9, pp. 428, 2007.CrossRefGoogle Scholar
  169. 169.
    D. Rodney, M. Fivel and R. Dendievel, “Discrete modeling of the mechanics of entangled materials,” Phys. Rev. Lett., vol. 95, pp. 108004, Sep 2, 2005.CrossRefGoogle Scholar
  170. 170.
    J. C. Maxwell, “On the calculation of the equilibrium and stiffness of frames,” Philosophical Magazine, vol. 27, pp. 598–604, 1864.Google Scholar
  171. 171.
    M. Wyart, H. Liang, A. Kabla and L. Mahadevan, “Elasticity of soft particles and colloids near Random Close Packing,” Arxiv, vol. 0806.4653, 2008.Google Scholar
  172. 172.
    G. A. Buxton and N. Clarke, ““Bending to stretching” transition in disordered networks,” Phys. Rev. Lett., vol. 98, pp. 238103, Jun 8, 2007.CrossRefGoogle Scholar
  173. 173.
    J. S. Palmer and M. C. Boyce, “Constitutive modeling of the stress–strain behavior of F-actin filament networks,” Acta Biomaterialia, vol. 4, pp. 597–612, 2008.CrossRefGoogle Scholar
  174. 174.
    J. E. Bischoff, E. M. Arruda and K. Grosh, “Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive model,” J. Biomech., vol. 33, pp. 645–652, Jun, 2000.CrossRefGoogle Scholar
  175. 175.
    I. Klapper and H. Qian, “Remarks on discrete and continuous large-scale models of DNA dynamics,” Biophys. J., vol. 74, pp. 2504–2514, 1998.CrossRefGoogle Scholar
  176. 176.
    K. J. Bathe, “Finite Element Procedures,” New Jersery: Prentice-Hall, 1996.Google Scholar
  177. 177.
    J. H. Shin, L. Mahadevan, P. T. So and P. Matsudaira, “Bending stiffness of a crystalline actin bundle,” J. Mol. Biol., vol. 337, pp. 255–261, Mar 19, 2004.CrossRefGoogle Scholar
  178. 178.
    C. Heussinger, M. Bathe and E. Frey, “Statistical mechanics of semiflexible bundles of wormlike polymer chains,” Phys. Rev. Lett., vol. 99, pp. 048101, Jul 27, 2007.CrossRefGoogle Scholar
  179. 179.
    M. Bathe, C. Heussinger, M. M. Claessens, A. R. Bausch and E. Frey, “Cytoskeletal bundle mechanics,” Biophys. J., vol. 94, pp. 2955–2964, Apr 15, 2008.CrossRefGoogle Scholar
  180. 180.
    D. A. Head, F. C. MacKintosh and A. J. Levine, “Nonuniversality of elastic exponents in random bond-bending networks,” Phys. Rev. E. Stat. Nonlin Soft Matter Phys., vol. 68, pp. 025101, Aug, 2003.Google Scholar
  181. 181.
    J. Wilhelm and E. Frey, “Elasticity of stiff polymer networks,” Phys. Rev. Lett., vol. 91, pp. 108103, Sep 5, 2003.CrossRefGoogle Scholar
  182. 182.
    E. M. Huisman, T. van Dillen, P. R. Onck and E. Van der Giessen, “Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior,” Phys. Rev. Lett., vol. 99, pp. 208103, Nov 16, 2007.CrossRefGoogle Scholar
  183. 183.
    C. Wang and A. Sastry, “Structure, mechanics and failure of stochastic fibrous networks: Part II—Network simulations and application,” J. Eng. Mater. Technol., vol. 122, pp. 460, 2000.CrossRefGoogle Scholar
  184. 184.
    K. K. Brewer, H. Sakai, A. M. Alencar, A. Majumdar, S. P. Arold, K. R. Lutchen, E. P. Ingenito and B. Suki, “Lung and alveolar wall elastic and hysteretic behavior in rats: effects of in vivo elastase treatment,” J. Appl. Physiol., vol. 95, pp. 1926–1936, Nov, 2003.Google Scholar
  185. 185.
    R. Hill, “Elastic properties of reinforced solids: some theoretical principles,” J. Mech. Phys. Solids, vol. 11, pp. 357–372, 1963.CrossRefGoogle Scholar
  186. 186.
    L. J. Gibson, “Biomechanics of cellular solids,” J. Biomech., vol. 38, pp. 377–399, Mar, 2005.CrossRefGoogle Scholar
  187. 187.
    L. J. Gibson, “The mechanical behaviour of cancellous bone,” J. Biomech., vol. 18, pp. 317–328, 1985.CrossRefGoogle Scholar
  188. 188.
    S. Vajjhala, A. M. Kraynik and L. J. Gibson, “A cellular solid model for modulus reduction due to resorption of trabeculae in bone,” J. Biomech. Eng., vol. 122, pp. 511–515, 2000.CrossRefGoogle Scholar
  189. 189.
    E. A. Sander, D. A. Shimko, K. C. Dee and E. A. Nauman, “Examination of apparent and cellular level properties of human vertebral cancellous bone using combined cellular solid models,” Biomech. Model. Mechanobiol., vol. 2, pp. 97–107, Nov, 2003.CrossRefGoogle Scholar
  190. 190.
    E. A. Sander, J. C. Downs, R. T. Hart, C. F. Burgoyne and E. A. Nauman, “A cellular solid model of the lamina cribrosa: mechanical dependence on morphology,” J. Biomech. Eng., vol. 128, pp. 879–889, Dec, 2006.CrossRefGoogle Scholar
  191. 191.
    M. J. Silva and L. J. Gibson, “The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids,” Int. J. Mech. Sci., vol. 39, pp. 549–563, 1997.CrossRefGoogle Scholar
  192. 192.
    D. A. Puleo and A. Nanci, “Understanding and controlling the bone-implant interface,” Biomaterials, vol. 20, pp. 2311–2321, 1999.CrossRefGoogle Scholar
  193. 193.
    M. H. Schwartz, P. H. Leo and J. L. Lewis, “A microstructural model for the elastic response of articular cartilage,” J. Biomech., vol. 27, pp. 865–873, Jul, 1994.CrossRefGoogle Scholar
  194. 194.
    R. G. Breuls, B. G. Sengers, C. W. Oomens, C. V. Bouten and F. P. Baaijens, “Predicting local cell deformations in engineered tissue constructs: a multilevel finite element approach,” J. Biomech. Eng., vol. 124, pp. 198–207, Apr, 2002.CrossRefGoogle Scholar
  195. 195.
    S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, 2nd ed. Amsterdam: North Holland, 1999.Google Scholar
  196. 196.
    M. Oda and K. Iwashita, Mechanics of Granular Materials: An Introduction. Rotterdam: Aa Balkema, 1999.Google Scholar
  197. 197.
    T. Stylianopoulos, C. A. Bashur, A. S. Goldstein, S. A. Guelcher and V. H. Barocas, “Computational predictions of the tensile properties of electrospun fiber meshes: effect of fiber diameter and fiber orientation.” J. Mech. Behav. Biomed. Mat., vol. 1, pp. 326–333, 2008.CrossRefGoogle Scholar
  198. 198.
    J. Soulhat, M. Buschmann and A. Shirazi-Adl, “A fibril-network-reinforced biphasic model of cartilage in unconfined compression,” J. Biomech. Eng., vol. 121, pp. 340, 1999.CrossRefGoogle Scholar
  199. 199.
    D. A. Drew, “Averaged field equations for two-phase media,” Stud. Appl. Math., vol. L, pp. 133–166, 1971.Google Scholar
  200. 200.
    B. Hinner, M. Tempel, E. Sackmann, K. Kroy and E. Frey, “Entanglement, elasticity, and viscous relaxation of actin solutions,” Phys. Rev. Lett., vol. 81, pp. 2614–2617, 1998.CrossRefGoogle Scholar
  201. 201.
    M. Claessens, R. Tharmann, K. Kroy and A. Bausch, “Microstructure and viscoelasticity of confined semiflexible polymer networks,” Nat. Phys., vol. 2, pp. 186, 2006.CrossRefGoogle Scholar
  202. 202.
    O. Lieleg and A. Bausch, “Cross-linker unbinding and self-similarity in bundled cytoskeletal networks,” Phys. Rev. Lett., vol. 99, pp. 158105, 2007.CrossRefGoogle Scholar
  203. 203.
    R. Tharmann, M. M. Claessens and A. R. Bausch, “Viscoelasticity of isotropically cross-linked actin networks,” Phys. Rev. Lett., vol. 98, pp. 088103, Feb 23, 2007.CrossRefGoogle Scholar
  204. 204.
    M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science, vol. 304, pp. 1301–1305, May 28, 2004.CrossRefGoogle Scholar
  205. 205.
    P. A. Janmey, U. Euteneuer, P. Traub and M. Schliwa, “Viscoelastic properties of vimentin compared with other filamentous biopolymer networks,” J. Cell Biol., vol. 113, pp. 155–160, 1991.CrossRefGoogle Scholar
  206. 206.
    J. Leterrier, J. Kas, J. Hartwig, R. Vegners and P. Janmey, “Mechanical effects of neurofilament cross-bridges. Modulation by phosphorylation, lipids, and interactions with F-actin,” J. Biol. Chem., vol. 271, pp. 15687, 1996.CrossRefGoogle Scholar
  207. 207.
    N. Wang and D. Stamenovic, “Contribution of intermediate filaments to cell stiffness, stiffening, and growth,” Am. J. Physiol. – Cell Physiol., vol. 279, pp. 188–194, 2000.Google Scholar
  208. 208.
    N. Wang, J. P. Butler and D. E. Ingber, “Mechanotransduction across the cell surface and through the cytoskeleton,” Science, vol. 260, pp. 1124–1127, May 21, 1993.CrossRefGoogle Scholar
  209. 209.
    D. E. Ingber, “Opposing views on tensegrity as a structural framework for understanding cell mechanics,” J. Appl. Physiol., vol. 89, pp. 1663–1670, Oct, 2000.Google Scholar
  210. 210.
    M. F. Coughlin and D. Stamenovic, “A tensegrity model of the cytoskeleton in spread and round cells,” J. Biomech. Eng., vol. 120, pp. 770–777, 1998.CrossRefGoogle Scholar
  211. 211.
    D. Stamenovic and D. Ingber, “Models of cytoskeletal mechanics of adherent cells,” Biomech. Model. Mechanobiol., vol. 1, pp. 95–108, 2002.CrossRefGoogle Scholar
  212. 212.
    C. P. Brangwynne, F. C. MacKintosh, S. Kumar, N. A. Geisse, J. Talbot, L. Mahadevan, K. K. Parker, D. E. Ingber and D. A. Weitz, “Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement,” J. Cell Biol., vol. 173, pp. 733, 2006.CrossRefGoogle Scholar
  213. 213.
    D. E. Discher, D. H. Boal and S. Boey, “Phase transitions and anisotropic responses of planar triangular nets under large deformation,” Phys. Rev. E, vol. 55, pp. 4762–4772, 1997.CrossRefGoogle Scholar
  214. 214.
    S. K. Boey, D. H. Boal and D. E. Discher, “Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models,” Biophys. J., vol. 75, pp. 1573–1583, 1998.CrossRefGoogle Scholar
  215. 215.
    R. Waugh and E. A. Evans, “Thermoelasticity of red blood cell membrane,” Biophys. J., vol. 26, pp. 115–131, Apr, 1979.CrossRefGoogle Scholar
  216. 216.
    D. E. Discher, D. H. Boal and S. K. Boey, “Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration,” Biophys. J., vol. 75, pp. 1584–1597, 1998.CrossRefGoogle Scholar
  217. 217.
    J. C. M. Lee, D. T. Wong and D. E. Discher, “Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton,” Biophys. J., vol. 77, pp. 853–864, 1999.CrossRefGoogle Scholar
  218. 218.
    J. Li, M. Dao, C. Lim and S. Suresh, “Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte,” Biophys. J., vol. 88, pp. 3707–3719, 2005.CrossRefGoogle Scholar
  219. 219.
    X. Luo, T. Stylianopoulos, V. H. Barocas and M. S. Shephard, “Multiscale computation for bioartificial soft tissues with complex geometries,” Eng. Comput., vol. 25, pp. 87–95, 2008.CrossRefGoogle Scholar
  220. 220.
    N. Stergiopulos, S. Vulliemoz, A. Rachev, J. J. Meister and S. E. Greenwald, “Assessing the homogeneity of the elastic properties and composition of the pig aortic media,” J. Vasc. Res., vol. 38, pp. 237–246, May–Jun, 2001.CrossRefGoogle Scholar
  221. 221.
    M. Frisen, M. Magi, I. Sonnerup and A. Viidik, “Rheological analysis of soft collagenous tissue. Part I: theoretical considerations,” J. Biomech., vol. 2, pp. 13–20, Mar, 1969.CrossRefGoogle Scholar
  222. 222.
    P. S. Robinson, “Development of a functional tissue-engineered heart valve replacement,” PhD dissertation, University of Minnesota, 2007.Google Scholar
  223. 223.
    S. Thomopoulos, G. M. Fomovsky, P. L. Chandran and J. W. Holmes, “Collagen fiber alignment does not explain mechanical anisotropy in fibroblast populated collagen gels,” J. Biomech. Eng., vol. 129, pp. 642, 2007.CrossRefGoogle Scholar
  224. 224.
    H. J. Burd, “A structural constitutive model for the human lens capsule,” Biomech. Model. Mechanobiol, Jul 13, 2008.Google Scholar
  225. 225.
    F. S. A. Cavalcante, S. Ito, K. Brewer, H. Sakai, A. M. Alencar, M. P. Almeida, J. S. Andrade, A. Majumdar, E. P. Ingenito and B. Suki, “Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue,” J. Appl. Physiol., vol. 98, pp. 672–679, 2005.CrossRefGoogle Scholar
  226. 226.
    P. A. DiMilla, K. Barbee and D. A. Lauffenburger, “Mathematical model for the effects of adhesion and mechanics on cell migration speed.” Biophys. J., vol. 60, pp. 15, 1991.CrossRefGoogle Scholar
  227. 227.
    N. Wang and D. E. Ingber, “Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension,” Biophys. J., vol. 66, pp. 2181–2189, 1994.CrossRefGoogle Scholar
  228. 228.
    I. B. Bischofs, F. Klein, D. Lehnert, M. Bastmeyer and U. S. Schwarz, “Filamentous network mechanics and active contractility determine cell and tissue shape,” Biophys. J., vol. 95, pp. 3488–3496, 2008.CrossRefGoogle Scholar
  229. 229.
    M. J. Buehler, “Hierarchical nanomechanics of collagen fibrils: Atomistic and molecular modeling,” in Collagen: Structure and Mechanics, Anonymous. New York: Springer, 2008, pp. 175–248.Google Scholar
  230. 230.
    S. J. Eppell, B. N. Smith, H. Kahn and R. Ballarini, “Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils,” J. R. Soc. Interface, vol. 3, pp. 117–121, Feb 22, 2006.CrossRefGoogle Scholar
  231. 231.
    A. Desai and T. J. Mitchison, “Microtubule polymerization dynamics,” Annu. Rev. Cell Dev. Biol., vol. 13, pp. 83–117, 1997.CrossRefGoogle Scholar
  232. 232.
    V. Bennett and D. Gilligan, “The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane,” Annu. Rev. Cell Biol., vol. 9, pp. 27–66, 1993.CrossRefGoogle Scholar
  233. 233.
    J. P. Collet, D. Park, C. Lesty, J. Soria, C. Soria, G. Montalescot, and J. W. Weisel, “Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy,” Aterioscler. Thromb. Vasc. Biol., vol. 20, pp. 1354–1361, 2000.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • E.A. Sander
    • 1
  • A.M. Stein
    • 2
  • M.J. Swickrath
    • 1
  • V.H. Barocas
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Institute for Mathematics and Its ApplicationsMinneapolisUSA

Personalised recommendations