Trends in Computational Nanomechanics pp 473-533 | Cite as
Multiscale Modeling of Biological Protein Materials – Deformation and Failure
Abstract
Multi-scale properties of biological protein materials have been the focal point of extensive investigations over the past decades, leading to formation of a research field that connects biology and materials science, referred to as materiomics. In this chapter we review atomistic based modeling approaches applied to study the scale-dependent mechanical behavior of biological protein materials, focused on mechanical deformation and failure properties. Specific examples are provided to illustrate the application of numerical methods that link atomistic to mesoscopic and larger continuum scales. The discussion includes the formulation of atomistic simulation methods, as well as examples that demonstrate their application in case studies focused on size effects of the fracture behavior of protein materials. The link of atomistic scale features of molecular structures to structural scales at length-scales of micrometers will be discussed in the analysis of the mechanics of a simple model of the nuclear lamin network, revealing how protein networks with structural flaws cope with mechanical load
Keywords
Hierarchical material Nanomechanics Biological protein materials Fracture Deformation Experiment Simulation Materiomics Multi-scale modelingReferences
- 1.Alberts, B., et al., Molecular Biology of the Cell. 2002, New York: Taylor & Francis.Google Scholar
- 2.Astbury, W.T. and A. Street, X-ray studies of the structures of hair, wool and related fibres. I. General. Transactions of the Royal Society of London A, 1931. 230: 75–101.CrossRefGoogle Scholar
- 3.Weiner, S. and H.D. Wagner, The material bone: Structure mechanical function relations. Annual Review of Materials Science, 1998. 28: 271–298.CrossRefGoogle Scholar
- 4.Currey, J.D., Bones: Structure and Mechanics. 2002, Princeton, NJ: Princeton University Press.Google Scholar
- 5.Lakes, R., Materials with structural hierarchy. Nature, 1993. 361(6412): 511–515.CrossRefGoogle Scholar
- 6.Wegst, U.G.K. and M.F. Ashby, The mechanical efficiency of natural materials. Philosophical Magazine, 2004. 84(21): 2167–2181.CrossRefGoogle Scholar
- 7.Vincent, J.F.V., Structural Biomaterials, Edited by Anonymous. 1990, Princeton, NJ: Princeton University Press, p. 244.Google Scholar
- 8.Fratzl, P. and R. Weinkamer, Nature’s hierarchical materials. Progress in Materials Science, 2007. 52(8): 1263–1334.CrossRefGoogle Scholar
- 9.Aizenberg, J., et al., Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science, 2005. 309(5732): 275–278.CrossRefGoogle Scholar
- 10.Courtney, T.H., Mechanical Behavior of Materials. 1990, New York, USA: McGraw-Hill.Google Scholar
- 11.Broberg, K.B., Cracks and Fracture. 1990, London: Academic Press.Google Scholar
- 12.Hirth, J.P. and J. Lothe, Theory of Dislocations. 1982, New York: Wiley-Interscience.Google Scholar
- 13.Fraser, P. and Bickmore, W., Nuclear organization of the genome and the potential for gene regulation. Nature, 2007. 447(7143): 413–417.CrossRefGoogle Scholar
- 14.Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): 677–689.CrossRefGoogle Scholar
- 15.Buehler, M.J., Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture and self-assembly. Journal of Materials Research, 2006. 21(8): 1947–1961.CrossRefGoogle Scholar
- 16.Buehler, M.J., Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(33): 12285–12290.CrossRefGoogle Scholar
- 17.Fratzl, P., et al., Structure and mechanical quality of the collagen-mineral nano-composite in bone. Journal of Materials Chemistry, 2004. 14: 2115–2123.CrossRefGoogle Scholar
- 18.An, K.N., Y.L. Sun, and Z.P. Luo, Flexibility of type I collagen and mechanical property of connective tissue. Biorheology, 2004. 41(3–4): 239–246.Google Scholar
- 19.Ramachandran, G.N. and G. Kartha, Structure of collagen. Nature, 1955. 176: 593–595.CrossRefGoogle Scholar
- 20.Doyle, J., Rules of engagement. Nature, 2007. 446: 860.CrossRefGoogle Scholar
- 21.Kitano, H., Computational systems biology. Nature, 2002. 420(6912): 206–210.CrossRefGoogle Scholar
- 22.Kitano, H., Systems biology: A brief overview. Science, 2002. 295(5560): 1662–1664.CrossRefGoogle Scholar
- 23.Gautieri, A., S. Uzel, S. Vesentini, A. Redaelli, M.J. Buehler, Molecular and mesoscale disease mechanisms of Osteogenesis Imperfecta. Biophysical Journal, 2009. 97(3): 857–865.Google Scholar
- 24.Suresh, S., et al., Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomaterialia, 2005. 1(1): 15–30.CrossRefGoogle Scholar
- 25.Cross, S.E., et al., Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology, 2007. 2: 780–783.CrossRefGoogle Scholar
- 26.Smith, B.L., et al., Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature, 1999. 399(6738): 761–763.CrossRefGoogle Scholar
- 27.Prater, C.B., H.J. Butt, and P.K. Hansma, Atomic force microscopy. Nature, 1990. 345(6278): 839–840.CrossRefGoogle Scholar
- 28.Sun, Y.L., et al., Stretching type II collagen with optical tweezers. Journal of Biomechanics, 2004. 37(11): 1665–1669.CrossRefGoogle Scholar
- 29.Dao, M., C.T. Lim, and S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers. Journal of the Mechanics and Physics of Solids, 2003. 51(11–12): 2259–2280.CrossRefGoogle Scholar
- 30.Tai, K., F.J. Ulm, and C. Ortiz, Nanogranular origins of the strength of bone. Nano Letters, 2006. 11: 2520–2525CrossRefGoogle Scholar
- 31.Lim, C.T., et al., Experimental techniques for single cell and single molecule biomechanics. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2006. 26(8): 1278–1288.Google Scholar
- 32.Goddard, W.A., A perspective of materials modeling in Handbook of Materials Modeling, Edited by S. Yip. 2006, Berlin: Springer.Google Scholar
- 33.Csete, M.E. and J.C. Doyle, Reverse engineering of biological complexity. Science, 2002. 295(5560): 1664.CrossRefGoogle Scholar
- 34.Stelling, J., et al., Robustness of cellular functions. Cell, 2004. 118(6): 675–685.CrossRefGoogle Scholar
- 35.Aizenberg, J., et al., Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. American Association for the Advancement of Science, 2005. 309: 275–278.Google Scholar
- 36.Currey, J.D., Materials science: Hierarchies in biomineral structures. Science, 2005. 309: 253–254.CrossRefGoogle Scholar
- 37.Woesz, A., et al., Micromechanical properties of biological silica in skeletons of deep-sea sponges. Journal of Materials Research, 2006. 21(8): 2069.CrossRefGoogle Scholar
- 38.Horn, J., N. Nafpliotis, and D.E. Goldberg, A niched Pareto genetic algorithm for multiobjective optimization. Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference on 1994, pp. 82–87.Google Scholar
- 39.Ackbarow, T., et al., Hierarchies, multiple energy barriers and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104: 16410–16415CrossRefGoogle Scholar
- 40.Ackbarow, T. and M.J. Buehler, Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in protein materials. Theoretical and Computational Nanoscience, 2008. 5(7): 1193–1204.CrossRefGoogle Scholar
- 41.Buehler, M.J., S. Keten, and T. Ackbarow, Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture. Progress in Materials Science, 2008. 53(8): 1101–1241.Google Scholar
- 42.Tang, Z., et al., Nanostructured artificial nacre. Nature Materials, 2003. 2(6): 413–418.CrossRefGoogle Scholar
- 43.Vashishta, P., R.K. Kalia, and A. Nakano, Large-scale atomistic simulations of dynamic fracture. Computing in Science and Engineering, 1999. 1 (5): 56–65.CrossRefGoogle Scholar
- 44.Rountree, C.L., et al., Atomistic aspects of crack propagation in brittle materials: Multimillion atom molecular dynamics simulations. Annual Review of Materials Research, 2002. 32: 377–400.CrossRefGoogle Scholar
- 45.Buehler, M.J., Atomistic Modeling of Materials Failure. 2008, New York: Springer.CrossRefGoogle Scholar
- 46.Buehler, M.J. and H.J. Gao, Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature, 2006. 439(7074): 307–310.CrossRefGoogle Scholar
- 47.Buehler, M.J., F.F. Abraham, and H. Gao, Hyperelasticity governs dynamic fracture at a critical length scale. Nature, 2003. 426: 141–146.CrossRefGoogle Scholar
- 48.Buehler, M.J. and H. Gao, Ultra large scale atomistic simulations of dynamic fracture in Handbook of Theoretical and Computational Nanotechnology, Edited by W. Schommers and A. Rieth. 2006, Stevenson Ranch, CA: American Scientific Publishers (ASP).Google Scholar
- 49.Buehler, M.J., A.C.T.v. Duin, and W.A. Goddard, Multi-paradigm modeling of dynamical crack propagation in silicon using the ReaxFF reactive force field. Physical Review Letters, 2006. 96(9): 095505.CrossRefGoogle Scholar
- 50.Buehler, M.J., et al., Threshold crack speed controls dynamical fracture of silicon single crystals. Physical Review Letters, 2007. 99: 165502CrossRefGoogle Scholar
- 51.Wang, W., et al., Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annual Review of Biophysics and Biomolecular Structure, 2001. 30: 211–243.CrossRefGoogle Scholar
- 52.Mackerell, A.D., Empirical force fields for biological macromolecules: Overview and issues. Journal of Computational Chemistry, 2004. 25(13): 1584–1604.CrossRefGoogle Scholar
- 53.Deniz, A.A., S. Mukhopadhyay, and E.A. Lemke, Single-molecule biophysics: at the interface of biology, physics and chemistry. Journal of the Royal Society Interface, 2008. 5(18): 15–45.CrossRefGoogle Scholar
- 54.Scheraga, H.A., M. Khalili, and A. Liwo, Protein-folding dynamics: Overview of molecular simulation techniques. Annual Review of Physical Chemistry, 2007. 58: 57–83.CrossRefGoogle Scholar
- 55.Van der Spoel, D., et al., GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 2005. 26(16): 1701–1718.CrossRefGoogle Scholar
- 56.Nelson, M.T., et al., NAMD: A parallel, object oriented molecular dynamics program. International Journal of Supercomputer Applications and High Performance Computing, 1996. 10(4): 251–268.CrossRefGoogle Scholar
- 57.Ponder, J. and D. Case, Force fields for protein simulations. Protein Simulations, 2003. 66: 27–85.CrossRefGoogle Scholar
- 58.MacKerell, A.D., et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 1998. 102(18): 3586–3616.CrossRefGoogle Scholar
- 59.Mayo, S.L., B.D. Olafson, and W.A. Goddard, Dreiding – A generic force-field for molecular simulations. Journal of Physical Chemistry, 1990. 94(26): 8897–8909.CrossRefGoogle Scholar
- 60.Rappe, A.K., et al., Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. Journal of the American Chemical Society, 1992. 114(25): 10024–10035.CrossRefGoogle Scholar
- 61.Pearlman, D.A., et al., Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 1995. 91(1–3): 1–41.CrossRefGoogle Scholar
- 62.Gao, H., A theory of local limiting speed in dynamic fracture. Journal of the Mechanics and Physics of Solids, 1996. 44(9): 1453–1474.CrossRefGoogle Scholar
- 63.Duin, A.C.T.v., et al., ReaxFF: A reactive force field for hydrocarbons. Journal of Physical Chemistry A, 2001. 105: 9396–9409.CrossRefGoogle Scholar
- 64.Brenner, D.W., et al., A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. Journal of Physics-Condensed Matter, 2002. 14(4): 783–802.CrossRefGoogle Scholar
- 65.Stuart, S.J., A.B. Tutein, and J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. Journal of Chemical Physics, 2000. 112(14): 6472–6486.CrossRefGoogle Scholar
- 66.Strachan, A., et al., Shock waves in high-energy materials: The initial chemical events in nitramine RDX. Physical Review Letters, 2003. 91(9): 098301-1–098301-4.CrossRefGoogle Scholar
- 67.Nielson, K.D., et al., Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. Journal of Physical Chemistry A, 2005. 109: 49.CrossRefGoogle Scholar
- 68.Duin, A.C.T.v., et al., ReaxFF SiO: Reactive force field for silicon and silicon oxide systems. Journal of Physical Chemistry A, 2003. 107: 3803–3811.CrossRefGoogle Scholar
- 69.Han, S.S., et al., Optimization and application of lithium parameters for the reactive force field, ReaxFF. Journal of Physical Chemistry A, 2005. 109(20): 4575–4582.CrossRefGoogle Scholar
- 70.Chenoweth, K., et al., Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. Journal of the American Chemical Society, 2005. 127(19): 7192–7202.CrossRefGoogle Scholar
- 71.Strachan, A., et al., Thermal decomposition of RDX from reactive molecular dynamics. Journal of Chemical Physics, 2005. 122(5): 054502CrossRefGoogle Scholar
- 72.Cheung, S., et al., ReaxFF(MgH) reactive force field for magnesium hydride systems. Journal of Physical Chemistry A, 2005. 109(5): 851–859.CrossRefGoogle Scholar
- 73.Chenoweth, K., et al., Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts. Journal of Physical Chemistry C, 2005. 112: 14645–14654.Google Scholar
- 74.Buehler, M.J., Hierarchical chemo-nanomechanics of stretching protein molecules: Entropic elasticity, protein unfolding and molecular fracture. Journal of Mechanics of Materials and Structures, 2007. 2(6): 1019–1057.CrossRefGoogle Scholar
- 75.Datta, D., A.C.T.v. Duin, and W.A. Goddard, Extending ReaxFF to Biomacromolecules. Unpublished, 2005.Google Scholar
- 76.Buehler, M.J., et al., The Computational Materials Design Facility (CMDF): A powerful framework for multiparadigm multi-scale simulations. Materials Research Society Proceedings, 2006. 894: LL3.8.Google Scholar
- 77.Tozzini, V., Coarse-grained models for proteins. Current Opinion in Structural Biology, 2005. 15(2): 144–150.CrossRefGoogle Scholar
- 78.Tirion, M., Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Physical Review Letters, 1996. 77(9): 1905–1908.CrossRefGoogle Scholar
- 79.Haliloglu, T., I. Bahar, and B. Erman, Gaussian dynamics of folded proteins. Physical Review Letters, 1997. 79(16): 3090–3093.CrossRefGoogle Scholar
- 80.Hayward, S. and N. Go, Collective variable description of native protein dynamics. Annual Review of Physical Chemistry, 1995. 46: 223–250.CrossRefGoogle Scholar
- 81.West, D.K., et al., Mechanical resistance of proteins explained using simple molecular models. Biophysical Journal, 2006. 90(1): 287–297.CrossRefGoogle Scholar
- 82.Dietz, H. and M. Rief, Elastic bond network model for protein unfolding mechanics. Physical Review Letters, 2008. 1(9): 098101-1–098101-4.Google Scholar
- 83.Sulkowska, J.I. and M. Cieplak, Mechanical stretching of proteins – a theoretical survey of the Protein Data Bank. Journal of Physics-Condensed Matter, 2007. 19(28): 283201.CrossRefGoogle Scholar
- 84.Bathe, M., A finite element framework for computation of protein normal modes and mechanical response. Proteins-Structure Function and Bioinformatics, 2008. 70(4): 1595–1609.CrossRefGoogle Scholar
- 85.Bahar, I. and R. Jernigan, Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. Journal of Molecular Biology, 1997. 266(1): 195–214.CrossRefGoogle Scholar
- 86.Nguyen, H. and C. Hall, Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(46): 16180–16185.CrossRefGoogle Scholar
- 87.Nguyen, H. and C. Hall, Spontaneous fibril formation by polyalanines: Discontinuous molecular dynamics simulations. Journal of the American Chemical Society, 2006. 128(6): 1890–1901.CrossRefGoogle Scholar
- 88.Arkhipov, A., P. L. Freddolino, et al., Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum. Biophysical Journal, 2006. 91(12): 4589–4597.Google Scholar
- 89.Buehler, M.J., Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(33): 12285–12290.CrossRefGoogle Scholar
- 90.Buehler, M., Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology, 2007. 18(29): 295102.CrossRefGoogle Scholar
- 91.Chen, J., W. Im, and C. Brooks, Balancing solvation and intramolecular interactions: Toward a consistent generalized born force field. Journal of the American Chemical Society, 2006. 128(11): 3728–3736.CrossRefGoogle Scholar
- 92.Chen, J., C. Brooks, and J. Khandogin, Recent advances in implicit solvent-based methods for biomolecular simulations. Current Opinion in Structural Biology, 2008. 18(2): 140–148.Google Scholar
- 93.Roux, B. and T. Simonson, Implicit solvent models. Biophysical Chemistry, 1999. 78(1–2): 1–20.CrossRefGoogle Scholar
- 94.Bertaud, J., Z. Qin, M.J. Buehler, Atomistically informed mesoscale model of alpha-helical protein domains, I International Journal for Multiscale Computational Engineering, 2009. 7(3): 237–250.Google Scholar
- 95.Ackbarow, T., D. Sen, C. Thaulow, and M.J. Buehler, Alpha-helical protein networks are self protective and flaw tolerant, PLoS ONE, 2009. 4(6): e6015.Google Scholar
- 96.Aebi, U., et al., The nuclear lamina is a meshwork of intermediate-type filaments. Nature, 1986. 323(6088): 560–564.CrossRefGoogle Scholar
- 97.Ackbarow, T. and M.J. Buehler, Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: Atomistic and continuum studies. Journal of Materials Science, 2007 42(21): 8771–8787.CrossRefGoogle Scholar
- 98.Buehler, M.J. and S. Keten, Elasticity, strength and resilience: A comparative study on mechanical signatures of α-helix, β-sheet and tropocollagen domains. Nano Research, 2008. 1(1): 63–71.CrossRefGoogle Scholar
- 99.Fudge, D.S., et al., The mechanical properties of hydrated intermediate filaments: Insights from hagfish slime threads. Biophysical Journal, 2003. 85(3): 2015–2027.CrossRefGoogle Scholar
- 100.Fudge, D.S. and J.M. Gosline, Molecular design of the alpha-keratin composite: insights from a matrix-free model, hagfish slime threads. Proceedings of the Royal Society of London Series B-Biological Sciences, 2004. 271(1536): 291–299.CrossRefGoogle Scholar
- 101.Bell, G.I., Models for the specific adhesion of cells to cells. Science, 1978. 200(4342): 618–627.CrossRefGoogle Scholar
- 102.Hanggi, P., P. Talkner, and M. Borkovec, Reaction-rate theory: Fifty years after Kramers. Review of Modern Physics, 1990. 62(2): 251–341.CrossRefGoogle Scholar
- 103.Zhurkov, S.N., Kinetic concept of the strength of solids. International Journal of Fracture Mechanics, 1965. 1: 311–323.Google Scholar
- 104.Evans, E. and K. Ritchie, Dynamic strength of molecular adhesion bonds. Biophysical Journal, 1997. 72(4): 1541–1555.CrossRefGoogle Scholar
- 105.Hyeon, C. and D. Thirumalai, Measuring the energy landscape roughness and the transition state location of biomolecules using single molecule mechanical unfolding experiments. Journal of Physics, Condensed Matter, 2007. 19(11): 113101.CrossRefGoogle Scholar
- 106.Seifert, U., Rupture of multiple parallel molecular bonds under dynamic loading. Physical Review Letters, 2000. 84(12): 2750–2753.CrossRefGoogle Scholar
- 107.Seifert, U., Dynamic strength of adhesion molecules: Role of rebinding and self-consistent rates. Europhysics Letters, 2002. 58(5): 792–798.CrossRefGoogle Scholar
- 108.Evans, E., Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annual Reviews in Biophysics and Biomolecular Structure, 2001. 30(1): 105–128.CrossRefGoogle Scholar
- 109.Hummer, G. and A. Szabo, Kinetics from nonequilibrium single-molecule pulling experiments. Biophysical Journal, 2003. 85(1): 5–15.CrossRefGoogle Scholar
- 110.Walton, E.B., S. Lee, and K.J. Van Vliet, Extending Bell’s model: How force transducer stiffness alters measured unbinding forces and kinetics of molecular complexes. Biophysical Journal, 2008. 94(7): 2621.CrossRefGoogle Scholar
- 111.Zwanzig, R., Diffusion in a rough potential. Proceedings of the National Academy of Sciences of the United States of America, 1988. 85(7): 2029–2030.CrossRefGoogle Scholar
- 112.Erdmann, T. and U.S. Schwarz, Stability of adhesion clusters under constant force. Physical Review Letters, 2004. 92(10): 108102.CrossRefGoogle Scholar
- 113.Erdmann, T. and U.S. Schwarz, Bistability of cell-matrix adhesions resulting from nonlinear receptor-ligand dynamics. Biophysical Journal, 2006. 91(6): L60.CrossRefGoogle Scholar
- 114.Erdmann, T. and U.S. Schwarz, Stability of adhesion clusters under constant force. Physical Review Letters, 2004. 92(10): 4.CrossRefGoogle Scholar
- 115.Rief, M., J.M. Fernandez, and H.E. Gaub, Elastically coupled two-level systems as a model for biopolymer extensibility. Physical Review Letters, 1998. 81(21): 4764–4767.CrossRefGoogle Scholar
- 116.Dietz, H. and M. Rief, Elastic bond network model for protein unfolding mechanics. Physical Review Letters, 2008. 100(9): 98101.CrossRefGoogle Scholar
- 117.Buehler, M.J. and T. Ackbarow, Fracture mechanics of protein materials. Materials Today, 2007. 10(9): 46–58.CrossRefGoogle Scholar
- 118.Keten, S. and M.J. Buehler, Asymptotic strength limit of hydrogen bond assemblies in proteins at vanishing pulling rates. Physical Review Letters, 2008. 100: 198301.Google Scholar
- 119.Keten, S. and M.J. Buehler, Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Letters, 2008. 8(2): 743–748.CrossRefGoogle Scholar
- 120.Yip, S., The strongest size. Nature, 1998. 391: 532–533.CrossRefGoogle Scholar
- 121.Wolf, D., et al., Deformation mechanism and inverse Hall-Petch behavior in nanocrystalline materials. Zeitschrift für Metallkunde, 2003. 94: 1052–1061.Google Scholar
- 122.Gruber, M. and A.N. Lupas, Historical review: Another 50th anniversary – new periodicities in coiled coils. Trends in Biochemical Sciences, 2003. 28(12): 679–685.CrossRefGoogle Scholar
- 123.Moir, R.D. and T.P. Spann, The structure and function of nuclear lamins: implications for disease. Cellular and Molecular Life Sciences, 2001. 58(12–13): 1748–1757.CrossRefGoogle Scholar
- 124.Wilson, K.L., M.S. Zastrow, and K.K. Lee, Lamins and disease: Insights into nuclear infrastructure. Cell, 2001. 104(5): 647–650.Google Scholar
- 125.Bryson, J.W., et al., Protein design – a hierarachical approach. Science, 1995. 270(5238): 935–941.CrossRefGoogle Scholar
- 126.Kirshenbaum, K., R.N. Zuckermann, and K.A. Dill, Designing polymers that mimic biomolecules. Current Opinion in Structural Biology, 1999. 9(4): 530–535.CrossRefGoogle Scholar
- 127.Kim, S. and P.A. Coulombe, Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes & Development, 2007. 21(13): 1581–1597.CrossRefGoogle Scholar
- 128.Herrmann, H., et al., Intermediate filaments: from cell architecture to nanomechanics. Nature Reviews Molecular Cell Biology, 2007. 8(7): 562–573.CrossRefGoogle Scholar
- 129.Ackbarow, T., S. Keten, and M.J. Buehler, A multi-timescale strength model of alpha-helical protein domains, Journal of Physics: Condensed Matter, 2009. 21: 035111.Google Scholar
- 130.Bell, G.I., Models for specific adhesion of cells to cells. Science, 1978. 200(4342): 618–627.CrossRefGoogle Scholar
- 131.Evans, E.A. and D.A. Calderwood, Forces and bond dynamics in cell adhesion. Science, 2007. 316(5828): 1148–1153.CrossRefGoogle Scholar
- 132.Evans, E., Probing the relation between force – lifetime – and chemistry in single molecular bonds. Annual Review of Biophysics and Biomolecular Structure, 2001. 30: 105–128.CrossRefGoogle Scholar
- 133.Evans, E.B., Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy. Biophysical Chemistry, 1999. 82(2–3): 83–97.CrossRefGoogle Scholar
- 134.Merkel, R., et al., Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature (London), 1999. 379(6714): 50–53.Google Scholar
- 135.Dudko, O.K., G. Hummer, and A. Szabo, Intrinsic rates and activation free energies from single-molecule pulling experiments. Physical Review Letters, 2006. 96(10): 108101.CrossRefGoogle Scholar
- 136.Makarov, D.E., Unraveling individual molecules by mechanical forces: Theory meets experiment. Biophysical Journal, 2007. 92(12): 4135–4136.CrossRefGoogle Scholar
- 137.West, D.K., P.D. Olmsted, and E. Paci, Mechanical unfolding revisited through a simple but realistic model. Journal of Chemical Physics, 2006. 124(15): 154909.Google Scholar
- 138.Erdmann, T. and U.S. Schwarz, Stability of adhesion clusters under constant force. Physical Review Letters, 2004. 92(10): 108102.CrossRefGoogle Scholar
- 139.Lantz, M.A., et al., Stretching the alpha-helix: A direct measure of the hydrogen-bond energy of a single-peptide molecule. Chemical Physics Letters, 1999. 315(1–2): 61–68.CrossRefGoogle Scholar
- 140.Kageshima, M., et al., Insight into conformational changes of a single alpha-helix peptide molecule through stiffness measurements. Chemical Physics Letters, 2001. 343(1–2): 77–82.CrossRefGoogle Scholar
- 141.Dudko, O.K., et al., Extracting kinetics from single-molecule force spectroscopy: Nanopore unzipping of DNA hairpins. Biophysical Journal, 2007. 92(12): 4188–4195.CrossRefGoogle Scholar
- 142.Keten, S. and M.J. Buehler. Strength limit of entropic elasticity in beta-sheet protein domains. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 2008. 78(6): 061913.Google Scholar
- 143.Griffith, A.A., The phenomenon of rupture and flows in solids. Philosophical Transactions of the Royal Society of London A, 1920. 221: 163–198.Google Scholar
- 144.Sheu, S.-Y., et al., Energetics of hydrogen bonds in peptides. PNAS, 2003. 100(22): 12683–12687.CrossRefGoogle Scholar
- 145.Rief, M., et al., Single molecule force spectroscopy of spectrin repeats: Low unfolding forces in helix bundles. Journal of Molecular Biology, 1999. 286(2): 553–561.CrossRefGoogle Scholar
- 146.Law, R., et al., Influence of lateral association on forced unfolding of antiparallel spectrin heterodimers. Journal of Biological Chemistry, 2004. 279(16): 16410–16416.CrossRefGoogle Scholar
- 147.Lenne, P.F., et al., Stales and transitions during forced unfolding of a single spectrin repeat. FEBS Letters, 2000. 476(3): 124–128.CrossRefGoogle Scholar
- 148.Law, R., et al., Cooperativity in forced unfolding of tandem spectrin repeats. Biophysical Journal, 2003. 84(1): 533–544.CrossRefGoogle Scholar
- 149.Law, R., et al., Pathway shifts and thermal softening in temperature-coupled forced unfolding of spectrin domains. Biophysical Journal, 2003. 85(5): 3286–3293.CrossRefGoogle Scholar
- 150.Bernstein, F.C., et al., Protein data bank – computer-based archival file for macromolecular structures. Journal of Molecular Biology, 1977. 112(3): 535–542.CrossRefGoogle Scholar
- 151.Kolano, C., et al., Watching hydrogen-bond dynamics in a beta-turn by transient two-dimensional infrared spectroscopy. Nature, 2006. 444(7118): 469–472.CrossRefGoogle Scholar
- 152.Grandbois, M., et al., How strong is a covalent bond? Science, 1999. 283(5408): 1727–1730.CrossRefGoogle Scholar
- 153.Bustamante, C., et al., Entropic elasticity of lambda-phage DNA. Science, 1994. 265(5178): 1599–1600.CrossRefGoogle Scholar
- 154.Marko, J.F. and E.D. Siggia, Stretching DNA. Macromolecules, 1995. 28(26): 8759–8770.CrossRefGoogle Scholar
- 155.Zhuang, X., Molecular biology: Unraveling DNA condensation with optical tweezers. Science, 2004. 305(5681): 188–190.CrossRefGoogle Scholar
- 156.Lang, M., Lighting up the mechanome, in Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2007 Symposium. 2008, National Academy of Engineering of the National Academies.Google Scholar
- 157.Ebenstein, D.M. and L.A. Pruitt, Nanoindentation of biological materials. Nano Today, 2006. 1(3): 26–33.CrossRefGoogle Scholar
- 158.Bozec, L., et al., Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption. Ultramicroscopy, 2005. 105(1–4): 79–89.CrossRefGoogle Scholar
- 159.Guzman, C., et al., Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy. Journal of Molecular Biology, 2006. 360(3): 623–630.CrossRefGoogle Scholar
- 160.Yuan, C.B., et al., Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy. Biochemistry, 2000. 39(33): 10219–10223.CrossRefGoogle Scholar
- 161.Sun, Y.L., Z.P. Luo, and K.N. An, Stretching short biopolymers using optical tweezers. Biochemical and Biophysical Research Communications, 2001. 286(4): 826–830.CrossRefGoogle Scholar
- 162.Sazonova, V., et al., A tunable carbon nanotube electromechanical oscillator. Nature, 2004. 431(7006): 284–287.CrossRefGoogle Scholar
- 163.Thorsen, T., S.J. Maerkl, and S.R. Quake, Microfluidic large-scale integration. Science, 2002. 298(5593): 580–584.CrossRefGoogle Scholar
- 164.Whitesides, G.M. and B. Grzybowski, Self-assembly at all scales. Science, 2002. 295(5564): 2418–2421.CrossRefGoogle Scholar
- 165.Yan, H., et al., DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 2003. 301(5641): 1882–1884.CrossRefGoogle Scholar
- 166.Rho, J.Y., L. Kuhn-Spearing, and P. Zioupos, Mechanical properties and the hierarchical structure of bone. Medical Engineering and Physics, 1998. 20(2): 92–102.CrossRefGoogle Scholar
- 167.Currey, J.D., Mechanical properties of mother of pearl in tension. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1977. 196(1125): 443–463.CrossRefGoogle Scholar
- 168.Menig, R., et al., Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells. Materials Science & Engineering A, 2001. 297(1–2): 203–211.CrossRefGoogle Scholar
- 169.Tesch, W., et al., Graded microstructure and mechanical properties of human crown dentin. Calcified Tissue International, 2001. 69(3): 147–157.CrossRefGoogle Scholar
- 170.Ritchie, R., M.J. Buehler, P. Hansma. The strength and toughness of bone, Physics Today, 2009. 62(6): 41-47.Google Scholar
- 171.Taylor, D., J.G. Hazenberg, and T.C. Lee, Living with cracks: Damage and repair in human bone. Nature Materials, 2007. 6(4): 263–266.CrossRefGoogle Scholar
- 172.Nalla, R.K., J.J. Kruzic, and R.O. Ritchie, On the origin of the toughness of mineralized tissue: Microcracking or crack bridging? Bone, 2004. 34(5): 790–798.CrossRefGoogle Scholar
- 173.Gao, H., et al., From the cover: Materials become insensitive to flaws at nanoscale: Lessons from nature. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(10): 5597.CrossRefGoogle Scholar
- 174.Mann, S., et al., Crystallization at Inorganic-organic Interfaces: Biominerals and biomimetic synthesis. Science, 1993. 261(5126): 1286–1292.CrossRefGoogle Scholar
- 175.Gilbert, P., M. Abrecht, and B.H. Frazer, The organic-mineral interface in biominerals. Reviews in Mineralogy and Geochemistry, 2005. 59(1): 157–185.CrossRefGoogle Scholar
- 176.Smith, B.L., et al., Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature, 1999. 399(6738): 761–763.CrossRefGoogle Scholar
- 177.Broedling, N.C., et al., The strength limit in a bio-inspired metallic nanocomposite. Journal of Mechanics and Physics of Solids, 2008. 56(3): 1086–1104.CrossRefGoogle Scholar
- 178.Sen, D. and M.J. Buehler, Crystal size controlled deformation mechanism: Breakdown of dislocation mediated plasticity in single nanocrystals under geometric confinement. Physical Review B, 2008. 77(19): 195439.CrossRefGoogle Scholar
- 179.Sen, D. and M.J. Buehler, Shock loading of bone-inspired metallic nanocomposites. Solid State Phenomena, 2008. 139: 11–22.Google Scholar
- 180.Whitesides, G.M., J.P. Mathias, and C.T. Seto, Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science, 1991. 254(5036): 1312–1319.CrossRefGoogle Scholar
- 181.Whitesides, G.M. and B. Grzybowski, Self-assembly at all scales. Science, 2002. 295: 2418–2421.CrossRefGoogle Scholar
- 182.Bejan, A., Constructal theory: From thermodynamic and geometric optimization to predicting shape in nature. Energy Conversion and Management, 1998. 39(16–18): 1705–1718.CrossRefGoogle Scholar
- 183.Kim, P., et al., Thermal Transport Measurements of Individual Multiwalled Nanotubes. Physical Review Letters, 2001. 87(21): 215502.CrossRefGoogle Scholar
- 184.Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano Letters, 2008. 8(3): 902–907.CrossRefGoogle Scholar
- 185.Meng, G., et al., Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(20): 7074–7078.CrossRefGoogle Scholar
- 186.Shinde, S.L. and J.S. Goela, eds. High Thermal Conductivity Materials. 2004, New York: Springer, p. 271.Google Scholar
- 187.Langer, R. and D.A. Tirrell, Designing materials for biology and medicine. Nature, 2004. 428(6982): 487–492.CrossRefGoogle Scholar
- 188.Zhao, X.J. and S.G. Zhang, Designer self-assembling peptide materials. Macromolecular Bioscience, 2007. 7(1): 13–22.CrossRefGoogle Scholar
- 189.Holland, J.H., Hidden Order – How Adaptation Builds Complexity. 1995, Reading, MA: Helix Books.Google Scholar
- 190.Ackbarow, T. and M.J. Buehler, Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in protein materials. Journal of Computational and Theoretical Nanoscience, 2008. 5(7): 1193–1204.Google Scholar
- 191.Cui, X.Q., et al., Biocatalytic generation of ppy-enzyme-CNT nanocomposite: From network assembly to film growth. Journal of Physical Chemistry C, 2007. 111(5): 2025–2031.CrossRefGoogle Scholar
- 192.Hule, R., D. Pochan, Polymer nanocomposites for biomedical application. MRS Bulletin, 2007. 32(4): 5.Google Scholar
- 193.Winey, K.I., Vaia R.A., Polymer nanocomposites. MRS Bulletin, 2007. 32(4): 5.Google Scholar
- 194.Petka, W.A., et al., Reversible hydrogels from self-assembling artificial proteins. Science, 1998. 281(5375): 389–392.CrossRefGoogle Scholar
- 195.Smeenk, J.M., et al., Controlled assembly of macromolecular beta-sheet fibrils. Angewandte Chemie-International Edition, 2005. 44(13): 1968–1971.CrossRefGoogle Scholar
- 196.Zhao, X.J. and S.G. Zhang, Molecular designer self-assembling peptides. Chemical Society Reviews, 2006. 35(11): 1105–1110.CrossRefGoogle Scholar
- 197.Mershin, A., et al., A classic assembly of nanobiomaterials. Nature Biotechnology, 2005. 23(11): 1379–1380.CrossRefGoogle Scholar
- 198.Aebi, U., et al., The nuclear lamina is a meshwork of intermediate-type filaments. Nature, 1986. 323(6088): 560–564.CrossRefGoogle Scholar
- 199.Buehler, M.J., Hierarchical chemo-nanomechanics of proteins: Entropic elasticity, protein unfolding and molecular fracture. Journal of Mechanics of Materials and Structures, 2007. 2(6): 1019–1057.CrossRefGoogle Scholar
- 200.Ashby, M.F., et al., The mechanical properties of natural materials. I. Material property charts. Proceedings of the Mathematical and Physical Sciences, 1995. 450(1938): 123–140.CrossRefGoogle Scholar
- 201.Fratzl, P., et al., Structure and mechanical quality of the collagen–mineral nano-composite in bone. Journal of Materials Chemistry, 2004. 14(14): 2115–2123.CrossRefGoogle Scholar