Advertisement

Electronic Properties and Reactivities of Perfect, Defected, and Doped Single-Walled Carbon Nanotubes

  • Wei Quan Tian
  • Lei Vincent Liu
  • Ya Kun Chen
  • Yan Alexander WangEmail author
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 9)

Abstract:

After we thoroughly surveyed first-principles theoretical methods commonly employed in the studies of carbon nanotubes, we highlighted the performance of such ab inito methods on the electronic properties and reactivities of perfect, vacancy-defected, and hetroatom-doped single-walled carbon nanotubes. We have found that a rich chemistry can take place at the vacancy defect and doping sites of nanosystem: this very fact will enable experimental scientists to produce novel functionalized nanosize materials with much higher level of precise control of the manufacturing process

Keywords:

Single-walled carbon nanotube Reactivity Electronic property Functionality Doping Vacancy defect 

References

  1. 1.
    W. Q. Tian, L. V. Liu, and Y. A. Wang, in Handbook of Theoretical and Computational Nanotechnology, Vol. 9, edited by M. Rieth and W. Schommers (American Scientific, Valencia, California, USA, 2006), Chap. 10, pp. 499–524.Google Scholar
  2. 2.
    S. Iijima and T. Ichihashi, Nature 363, 603 (1993).Google Scholar
  3. 3.
    D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature 363, 605 (1993).Google Scholar
  4. 4.
    S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, Acc. Chem. Res. 35, 1105 (2002).Google Scholar
  5. 5.
    T. Hermraj-Benny, S. Banerjee, and S. S. Wong, Chem. Mater. 16, 1855 (2004).Google Scholar
  6. 6.
    J.-M. Nhut, P. Nguyen, C. Pham-Huu, N. Keller, and M.-J. Ledoux, Catal. Today 91–92, 91 (2004).CrossRefGoogle Scholar
  7. 7.
    J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, and Z. Du, J. Phys. Chem. B 107, 3712 (2003).Google Scholar
  8. 8.
    T. Yamabe, M. Imade, M. Tanaka, and T. Sato, Synth. Metals 117, 61 (2001).CrossRefGoogle Scholar
  9. 9.
    X. Lu, F. Tian, Y. Feng, X. Xu, N. Wang, and Q. Zhang, Nano Lett. 2, 1325 (2002).CrossRefGoogle Scholar
  10. 10.
    J. Li, Y. Zhang, and M. Zhang, Chem. Phys. Lett. 364, 328 (2002).CrossRefGoogle Scholar
  11. 11.
    J. Cioslowski, N. Rao, and D. Moncrieff, J. Am. Chem. Soc. 124, 8485 (2002).CrossRefGoogle Scholar
  12. 12.
    T. Kar, B. Akdim, X. Duan, and R. Pachter, Chem. Phys. Lett. 392, 176 (2004).CrossRefGoogle Scholar
  13. 13.
    M. Zhao, Y. Xia, J. P. Lewis, and L. Mei, J. Phys. Chem. B 108, 9599 (2004).CrossRefGoogle Scholar
  14. 14.
    S. Gustavsson, A. Rosén, H. Grennberg, and K. Bolton, Chem. Eur. J. 10, 2223 (2004).CrossRefGoogle Scholar
  15. 15.
    E. Joselevich, Chem. Phys. Chem. 5, 619 (2004).Google Scholar
  16. 16.
    Z. Zhou, M. Steigerwald, M. Hybertsen, L. Brus, and R. Friesner, J. Am. Chem. Soc. 126, 3597 (2004).CrossRefGoogle Scholar
  17. 17.
    T. Yumura, K. Hirahara, S. Bandow, K. Yoshizawa, and S. Iijima, Chem. Phys. Lett. 386, 38 (2004).CrossRefGoogle Scholar
  18. 18.
    D. L. Carroll, P. Redlich, P. M. Ajayan, J. C. Charlier, X. Blase, A. De Vita, and R. Car, Phys. Rev. Lett. 78, 2811 (1997).CrossRefGoogle Scholar
  19. 19.
    Z. Klusek, P. Kowalczyk, and P. Byszewski, Vacuum 63, 145 (2001).CrossRefGoogle Scholar
  20. 20.
    M. Shiraishi and M. Ata, Synth. Metals 128, 235 (2002).Google Scholar
  21. 21.
    K. A. Dean and B. R. Chalamala, J. Vac. Sci. Technol. B 21, 868 (2003).CrossRefGoogle Scholar
  22. 22.
    H. Kim, J. Lee, S.-J. Kahng, Y.-W. Son, S. B. Lee, C.-K. Lee, J. Ihm, and Y. Kuk, Phys. Rev. Lett. 90, 216107 (2003).CrossRefGoogle Scholar
  23. 23.
    X. Blase, L. X. Benedict, E. L. Shirley, and S. G.Louie, Phys. Rev. Lett. 72, 1878 (1994).CrossRefGoogle Scholar
  24. 24.
    Y. H. Lee, S. G. Kim, and D. Tománek, Phys. Rev. Lett. 78, 2393 (1997).CrossRefGoogle Scholar
  25. 25.
    T. Yaguchi and T. Ando, J. Phys. Soc. Jpn. 70, 1327 (2001).CrossRefGoogle Scholar
  26. 26.
    T. Yaguchi and T. Ando, J. Phys. Soc. Jpn. 71, 2224 (2002).CrossRefGoogle Scholar
  27. 27.
    J. Jiang, J. Dong, and D. Y. Xing, Phys. Rev. B 65, 245418 (2002).CrossRefGoogle Scholar
  28. 28.
    S. Compernolle, L. Chibotaru, and A. Ceulemans, J. Chem. Phys. 119, 2854 (2003).CrossRefGoogle Scholar
  29. 29.
    L. Chico and W. Jaskόlski, Phys. Rev. B 69, 085406 (2004).CrossRefGoogle Scholar
  30. 30.
    G. Y. Guo, K. C. Chu, D.-S. Wang, and C.-G. Duan, Phys. Rev. B 69, 205416 (2004).CrossRefGoogle Scholar
  31. 31.
    P. M. Ajayan and O. Z. Zhou, in Carbon Nanotubes Synthesis, Structure, Properties, and Applications, edited by M. S. Dresselhaus, G. Dresselhaus, and P. Avoutis (Springer-Verlag, Berlin, 2001).Google Scholar
  32. 32.
    P. Avouris, Acc. Chem. Res. 35, 1026 (2002).CrossRefGoogle Scholar
  33. 33.
    R. D. Antonov and A. T. Johnson, Phys. Rev. Lett. 83, 3274 (1999).CrossRefGoogle Scholar
  34. 34.
    M. S. Fuhrer, J. Nygård, L. Shih, M. Forero, Y.-G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, and P. L. McEuen, Science 288, 494 (2000).CrossRefGoogle Scholar
  35. 35.
    J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).CrossRefGoogle Scholar
  36. 36.
    P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science 287, 1801 (2000).CrossRefGoogle Scholar
  37. 37.
    A. Goldoni, R. Larciprete, L. Petaccia, and S. Lizzit, J. Am. Soc. Chem. 125, 11329 (2003).CrossRefGoogle Scholar
  38. 38.
    O. Zhou, H. Shimoda, B. Gao, S. Oh, L. Fleming, and G. Yue, Acc. Chem. Res. 35, 1045 (2002).CrossRefGoogle Scholar
  39. 39.
    W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Appl. Phys. Lett. 75, 3129 (1999).CrossRefGoogle Scholar
  40. 40.
    P. Serp, M. Corrias, and P. Kalck, Appl. Catal. A 253, 337 (2003).CrossRefGoogle Scholar
  41. 41.
    S. Botti, R. Ciardi, L. De Dominicis, L. S. Asilyan, R. Fantoni, and T. Marolo, Chem. Phys. Lett. 378, 117 (2003).CrossRefGoogle Scholar
  42. 42.
    S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, Adv. Mater. 15, 534 (2003).CrossRefGoogle Scholar
  43. 43.
    S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, J. Lightwave Technol. 22, 51 (2004).CrossRefGoogle Scholar
  44. 44.
    A. G. Rozhin, Y. Sakakibara, M. Tokumoto, H. Kataura, and Y. Achiba, Thin Solid Films 464, 368 (2004).CrossRefGoogle Scholar
  45. 45.
    C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, Science 286, 1127 (1999).CrossRefGoogle Scholar
  46. 46.
    N. Hamada, S.-I. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).CrossRefGoogle Scholar
  47. 47.
    M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1995), Chap. 19.Google Scholar
  48. 48.
    I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Bronikowski, J. L. Margrave, R. E. Smalley, and R. H. Hauge, J. Phys. Chem. B 105, 8297 (2001).CrossRefGoogle Scholar
  49. 49.
    E. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge, and J. L. Margrave, Chem. Phys. Lett. 296, 188 (1998).CrossRefGoogle Scholar
  50. 50.
    P. J. Boul, J. Liu, E. T. Mickelson, C. B. Huffman, L. M. Ericson, I. W. Chiang, K. A. Smith, D. T. Colbert, R. H. Hauge, J. L. Margrave, and R. E. Smalley, Chem. Phys. Lett. 310, 367 (1999).CrossRefGoogle Scholar
  51. 51.
    M. Holzinger, O. Vostrowsky, F. H. Hirsch, F. Hennrich, M. Kappes, R. Weiss, and F. Jellen, Angew. Chem. Int. Ed. 40, 4002 (2001).CrossRefGoogle Scholar
  52. 52.
    J. L. Bahr and J. M. Tour, Chem. Mater. 13, 3823 (2001).CrossRefGoogle Scholar
  53. 53.
    J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, and J. M. Tour, J. Am. Chem. Soc. 123, 6536 (2001).CrossRefGoogle Scholar
  54. 54.
    V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, and A. Hirsch, J. Am. Chem. Soc. 124, 760 (2002).CrossRefGoogle Scholar
  55. 55.
    P. Umek, J. W. Seo, K. Hernadi, A. Mrzel, P. Pechy, D. D. Mihailovic, and L. Forrό, Chem. Mater. 15, 4751 (2003).CrossRefGoogle Scholar
  56. 56.
    J. L. Stevens, A. Y. Huang, H. Peng, L. W. Chiang, V. N. Khabashesku, and J. L. Margrave, Nano Lett. 3, 331 (2003).CrossRefGoogle Scholar
  57. 57.
    H. Peng, L. B. Alemany, J. L. Margrave, and V. N. Khabashesku, J. Am. Chem. Soc. 125, 15174 (2003).CrossRefGoogle Scholar
  58. 58.
    H. Hu, B. Zhao, M. A. Hamon, K. Kamaras, M. E. Itkis, and R. C. Haddon, J. Am. Chem. Soc. 125, 14893 (2003).CrossRefGoogle Scholar
  59. 59.
    S. Banerjee, M. G. C. Kahn, and S. S. Wong, Chem. Eur. J. 9, 1898 (2003).CrossRefGoogle Scholar
  60. 60.
    B. Zhao, H. Hu, and R. C. Haddon, Adv. Funct. Mater. 14, 71 (2004).CrossRefGoogle Scholar
  61. 61.
    L. Zhang, V. U. Kiny, H. Peng, J. Zhu, R. F. M. Lobo, J. L. Margrave, and V. N. Khabashesku, Chem. Mater. 16, 2055 (2004).CrossRefGoogle Scholar
  62. 62.
    M. A. Hamon, J. Chen, H. Hu, Y. Chen, M. E. Itkis, A. M. Rao, P. C. Eklund, and R. C. Haddon, Adv. Mater. 11, 834 (1999).CrossRefGoogle Scholar
  63. 63.
    J. L. Bahr and J. M. Tour, J. Mater. Chem. 12, 1952 (2002).CrossRefGoogle Scholar
  64. 64.
    P. M. Ajayan, V. Ravikumar, and J.-C. Charlier, Phys. Rev. Lett. 81, 1437 (1998).CrossRefGoogle Scholar
  65. 65.
    M. Igami, T. Nakanishi, and T. Ando, J. Phys. Soc. Jpn. 68, 716 (1999).CrossRefGoogle Scholar
  66. 66.
    M. Igami, T. Nakanishi, and T. Ando, Physica B 284, 1746 (2000).CrossRefGoogle Scholar
  67. 67.
    A. V. Krasheninnikov and K. Nordlund, Phys. Solid State 44, 470 (2002).CrossRefGoogle Scholar
  68. 68.
    J.-C. Charlier, Acc. Chem. Res. 35, 1063 (2002).CrossRefGoogle Scholar
  69. 69.
    A. V. Krasheninnikov and K. Nordlund, J. Vac. Sci. Technol. B 20, 728 (2002).CrossRefGoogle Scholar
  70. 70.
    A. J. Lu and B. C. Pan, Phys. Rev. Lett. 92, 105504 (2004).CrossRefGoogle Scholar
  71. 71.
    V. V. Belavin, L. G. Bulusheva, and A. V. Okotrub, Int. J. Quantum Chem. 96, 239 (2004).CrossRefGoogle Scholar
  72. 72.
    L. Valentini, F. Mercuri, I. Armentano, C. Cantalini, S. Picozzi, L. Lozzi, S. Santucci, A. Sgamellotti, and J. M. Kenny, Chem. Phys. Lett. 387, 356 (2004).CrossRefGoogle Scholar
  73. 73.
    D. L. Carroll, P. Redlich, X. Blase, J.-C. Charlier, S. Curran, P. M. Ajayan, S. Roth, and M. Rühle, Phys. Rev. Lett. 81, 2332 (1998).CrossRefGoogle Scholar
  74. 74.
    W. Han, Y. Bando, K. Kurashima, and T. Sato, Chem. Phys. Lett. 299, 368 (1999).CrossRefGoogle Scholar
  75. 75.
    S. Peng and K. Cho, Nano Lett. 3, 513 (2003).CrossRefGoogle Scholar
  76. 76.
    M. Zhao, Y. Xia, J. P. Lewis, and R. Zhang, J. Appl. Phys. 94, 2398 (2003).CrossRefGoogle Scholar
  77. 77.
    A. V. Nikulkina and P. N. D’yachkov, Russ. J. Inorg. Chem. 49, 430 (2004).Google Scholar
  78. 78.
    P. Lambin, A. A. Lucas, and J. C. Charlier, J. Phys. Chem. Solids 58, 1833 (1997).CrossRefGoogle Scholar
  79. 79.
    H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 84, 2917 (2000).CrossRefGoogle Scholar
  80. 80.
    M. B. Nardelli, J.-L. Fattebert, D. Orlikowski, C. Roland, Q. Zhao, and J. Bernholc, Carbon 38, 1703 (2000).CrossRefGoogle Scholar
  81. 81.
    H.-F. Hu, Y.-B. Li, and H.-B. He, Diam. Relat. Mater. 10, 1818 (2001).CrossRefGoogle Scholar
  82. 82.
    L. G. Zhou and S. Q. Shi, Carbon 41, 579 (2003).CrossRefGoogle Scholar
  83. 83.
    Y. Miyamoto, A. Rubio, S. Berber, M. Yoon, and D. Tománek, Phys. Rev. B 69, 121413 (2004).CrossRefGoogle Scholar
  84. 84.
    D. E. Clemmer, J. M. Hunter, K. B. Shelimov, and M. F. Jarrold, Nature 372, 248 (1994).CrossRefGoogle Scholar
  85. 85.
    W. Branz, I. M. L. Billas, N. Malinowski, F. Tast, M. Heinebrodt, and T. P. Martin, J. Chem. Phys. 109, 3425 (1998).CrossRefGoogle Scholar
  86. 86.
    J. M. Poblet, J. Muñoz, K. Winkler, M. Cancilla, A. Hayashi, C. B. Lebrilla, and A. L. Balch, Chem. Commun. 493 (1999).Google Scholar
  87. 87.
    Q. Kong, Y. Shen, L. Zhao, J. Zhuang, S. Qian, Y. Li, Y. Lin, and R. Cai, J. Chem. Phys. 116, 128 (2002).CrossRefGoogle Scholar
  88. 88.
    A. Hayashi, Y. Xie, J. M. Poblet, J. M. Campanera, C. B. Lebrilla, and A. L. Balch, J. Phys. Chem. A 108, 2192 (2004).Google Scholar
  89. 89.
    C. Ding, J. Yang, X. Cui, and C. T. Chan, J. Chem. Phys. 111, 8481 (1999).CrossRefGoogle Scholar
  90. 90.
    I. M. L. Billas, C. Massobrio, M. Boero, M. Parrinello, W. Branz, F. Tast, N. Malinowski, M. Heinebrodt, and T. P. Martin, Comput. Mater. Sci. 17, 191 (2000).CrossRefGoogle Scholar
  91. 91.
    X. Blase, J.-C. Charlier, A. De Vita, and R. Car, Appl. Phys. Lett. 70, 197 (1996).CrossRefGoogle Scholar
  92. 92.
    D. Golberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, Chem. Phys. Lett. 308, 337 (1999).CrossRefGoogle Scholar
  93. 93.
    S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H. C. Shih, Appl. Phys. Lett. 74, 197 (1999).CrossRefGoogle Scholar
  94. 94.
    L. V. Liu, W. Q. Tian, and Y. A. Wang, J. Phys. Chem. B 110, 1999 (2006).CrossRefGoogle Scholar
  95. 95.
    A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (Dover, New York, 1996).Google Scholar
  96. 96.
    R. McWeeny, Methods of Molecular Quantum Mechanics, 2nd Ed. (Academic, New York, 1992).Google Scholar
  97. 97.
    F. Jensen, Introduction to Computational Chemistry (Wiley, New York, 1998).Google Scholar
  98. 98.
    D. C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems (Wiley, New York, 2001).Google Scholar
  99. 99.
    C. J. Cramer, Essentials of Computational Chemistry: Theories and Models (Wiley, New York, 2002).Google Scholar
  100. 100.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
  101. 101.
    W. Kohn and L. J. Sham, Phys. Rev. 40, A1133 (1965).CrossRefGoogle Scholar
  102. 102.
    R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).Google Scholar
  103. 103.
    Y. A. Wang and E. A. Carter, in Theoretical Methods in Condensed Phase Chemistry, edited by S. D. Schwartz (Kluwer, Dordrecht, 2000), p. 117.Google Scholar
  104. 104.
    C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).CrossRefGoogle Scholar
  105. 105.
    B. O. Roos, in Advances in Chemical Physics: Ab Initio Mehtods in Quantum Chemistry Part II, Vol. 69, edited by K. P. Lawley (Wiley, New York, 1987), p. 1.Google Scholar
  106. 106.
    I. Shavitt, in Modern Theoretical Chemistry, Vol. 3, edited by H. F. Schaefer III (Plenum, New York, 1977), p. 189.Google Scholar
  107. 107.
    J. Cizek, Chem. Phys. 45, 4256 (1966).Google Scholar
  108. 108.
    J. A. Pople, D. P. Santry, and G. A. Segal, J. Chem. Phys. 43, S129 (1965).CrossRefGoogle Scholar
  109. 109.
    J. A. Pople and G. A. Segal, J. Chem. Phys. 43, S136 (1965).CrossRefGoogle Scholar
  110. 110.
    J. A. Pople and G. A. Segal, J. Chem. Phys. 44, 3289 (1966).CrossRefGoogle Scholar
  111. 111.
    J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. Phys. 47, 2026 (1967).CrossRefGoogle Scholar
  112. 112.
    M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99, 4899 (1977).CrossRefGoogle Scholar
  113. 113.
    M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985).CrossRefGoogle Scholar
  114. 114.
    J. J. P. Stewart, J. Comput. Chem. 10, 209 (1989).CrossRefGoogle Scholar
  115. 115.
    J. J. P. Stewart, J. Comput. Chem. 10, 221 (1989).CrossRefGoogle Scholar
  116. 116.
    W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996).CrossRefGoogle Scholar
  117. 117.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  118. 118.
    S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, and M. J. Frisch, J. Mol. Struct. (Theochem) 461, 1 (1999).CrossRefGoogle Scholar
  119. 119.
    T. Klüner, N. Govind, Y. A. Wang, and E. A. Carter, J. Chem. Phys. 116, 42 (2002).CrossRefGoogle Scholar
  120. 120.
    T. Klüner, N. Govind, Y. A. Wang, and E. A. Carter, Phys. Rev. Lett. 88, 209702 (2002).CrossRefGoogle Scholar
  121. 121.
    T. Klüner, N. Govind, Y. A. Wang, and E. A. Carter, Phys. Rev. Lett. 86, 5954 (2001).CrossRefGoogle Scholar
  122. 122.
    N. Govind, Y. A. Wang, and E. A. Carter, J. Chem. Phys. 110, 7677 (1999).CrossRefGoogle Scholar
  123. 123.
    N. Govind, Y. A. Wang, A. J. R. da Silva, and E. A. Carter, Chem. Phys. Lett. 295, 129 (1998).CrossRefGoogle Scholar
  124. 124.
    W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995).CrossRefGoogle Scholar
  125. 125.
    B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comp. Chem. 4, 187 (1983).CrossRefGoogle Scholar
  126. 126.
    N. L. Allinger, Y. H. Yuh, and J.-H. Lii, J. Am. Chem. Soc. 111, 8551 (1989).CrossRefGoogle Scholar
  127. 127.
    A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).CrossRefGoogle Scholar
  128. 128.
    W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995).CrossRefGoogle Scholar
  129. 129.
    A. D. Mackerell, D. Bashford, M. Bellott, R. I. Dunbrack, J. D. Evanseck, M. J. Field, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, T. F. K. Lau, C. Mattos, S. Michnick, T. Nago, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkievicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B 102, 3586 (1998).CrossRefGoogle Scholar
  130. 130.
    A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, J. Am. Chem. Soc. 114, 10046 (1992).CrossRefGoogle Scholar
  131. 131.
    D. L. Thompson, Ed., Modern Methods for Multidimensional Dynamics Computation in Chemistry (World Scientific, Singapore, 1998).Google Scholar
  132. 132.
    R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).CrossRefGoogle Scholar
  133. 133.
    H. B. Schlegel, J. M. Millam, S. S. Iyengar, G. A. Voth, A. D. Daniels, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 114, 9758 (2001).CrossRefGoogle Scholar
  134. 134.
    S. S. Iyengar, H. B. Schlegel, J. M. Millam, G. A. Voth, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 115, 10291 (2001).CrossRefGoogle Scholar
  135. 135.
    H. B. Schlegel, S. S. Iyengar, X. Li, J. M. Millam, G. A. Voth, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 117, 8694 (2002).CrossRefGoogle Scholar
  136. 136.
    S. S. Iyengar, H. B. Schlegel, G. A. Voth, J. M. Millam, G. E. Scuseria, and M. J. Frisch, Isr. J. Chem. 42, 191 (2002).CrossRefGoogle Scholar
  137. 137.
    S. Bandow, K. Hirahara, T. Hiraoka, G. Chen, P. C. Eklund, and S. Iijima, MRS Bull. 29, 260 (2004).Google Scholar
  138. 138.
    A. De Vita, J.-C. Charlier, X. Blasé, and R. Car, Appl. Phys. A 68, 283 (1999).CrossRefGoogle Scholar
  139. 139.
    R. Tamura and M. Tsukada, Phys. Rev. B 52, 6015 (1995).CrossRefGoogle Scholar
  140. 140.
    Gaussian 03, Revision B.05, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 2003.Google Scholar
  141. 141.
    R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971).CrossRefGoogle Scholar
  142. 142.
    W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).CrossRefGoogle Scholar
  143. 143.
    P. C. Hariharan and J. A. Pople, Mol. Phys. 27, 209 (1974).CrossRefGoogle Scholar
  144. 144.
    M. S. Gordon, Chem. Phys. Lett. 76, 163 (1980).CrossRefGoogle Scholar
  145. 145.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
  146. 146.
    J. P. Perdew, I. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).CrossRefGoogle Scholar
  147. 147.
    J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).CrossRefGoogle Scholar
  148. 148.
    A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).CrossRefGoogle Scholar
  149. 149.
    T. Yumura, S. Bandow, K. Yoshizawa, and S. Iijima, J. Phys. Chem. B 108, 11426 (2004).CrossRefGoogle Scholar
  150. 150.
    J.-P. Deng, D.-D. Ju, G.-R. Her, C.-Y. Mou, C.-J. Chen, Y.-Y. Lin, and C.-C. Han, J. Phys. Chem. 97, 11575 (1993).CrossRefGoogle Scholar
  151. 151.
    M. Saunders, H. A. Jimenezazquez, R. J. Cross, and R. J. Poreda, Science 259, 1428 (1993).CrossRefGoogle Scholar
  152. 152.
    R. L. Murry, D. L. Strout, G. K. Odom, and G. E. Scuseria, Nature 366, 655 (1993).CrossRefGoogle Scholar
  153. 153.
    M.-L. Sun, Z. Slanina, and S.-L. Lee, Fullerene Sci. Technol. 3, 627 (1995).Google Scholar
  154. 154.
    L. Turker, J. Mol. Struct.: Theochem. 571, 99 (2001).CrossRefGoogle Scholar
  155. 155.
    Y. H. Hu and E. Ruckenstein, J. Chem. Phys. 120, 7971 (2004).CrossRefGoogle Scholar
  156. 156.
    Y. H. Hu and E. Ruckenstein, J. Chem. Phys. 119, 10073 (2003).CrossRefGoogle Scholar
  157. 157.
    S. U. Lee and Y.-K. Han, J. Chem. Phys. 121, 3941 (2004).CrossRefGoogle Scholar
  158. 158.
    J. Ribas-Ariño and J. J. Novoa, Phys. Rev. B 73, 035405 (2006).CrossRefGoogle Scholar
  159. 159.
    A. N. Andriotis, M. Menon, R. M. Sheetz, and L. Chernozatonskii, Phys. Rev. Lett. 90, 026801 (2003).CrossRefGoogle Scholar
  160. 160.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  161. 161.
    W. Q. Tian, J.-K. Feng, Y. A. Wang, and Y. Aoki, J. Chem. Phys. 125, 094105 (2006).CrossRefGoogle Scholar
  162. 162.
    F. Leclercq, P. Damay, M. Foukani, P. Chieux, M. C. Bellissent-Funel, A. Rassat, and C. Fabre, Phys. Rev. B 48, 2748 (1993).CrossRefGoogle Scholar
  163. 163.
    L. V. Liu, W. Q. Tian, and Y. A. Wang, Int. J. Quantum Chem. 109, 3441 (2009).Google Scholar
  164. 164.
    S. C. O’Brien, J. R. Heath, R. F. Curl, and R. E. Smalley, J. Chem. Phys. 88, 220 (1988).CrossRefGoogle Scholar
  165. 165.
    C.-H. Kiang, W. A. Goddard III, R. Beyers, and D. S. Bethune, J. Phys. Chem. 100, 3749 (1996);CrossRefGoogle Scholar
  166. 166.
    Y. Zhu, T. Yi, B. Zheng, and L. Cao, Appl. Surf. Sci. 137, 83 (1999).CrossRefGoogle Scholar
  167. 167.
    F. Banhart, Rep. Prog. Phys. 62, 1181 (1999).CrossRefGoogle Scholar
  168. 168.
    J. C. Rienstra-Kiracofe, G. S. Tschumper, and H. F. Schaefer III, Chem. Rev. 102, 231 (2002).CrossRefGoogle Scholar
  169. 169.
    M. Terrones, H. Terrones, F. Banhart, J.-C. Charlier, and P. M. Ajayan, Science 288, 1226 (2000).CrossRefGoogle Scholar
  170. 170.
    D. Srivastava, M. Menon, C. Daraio, S. Jin, B. Sadanadan, and A. M. Rao, Phys. Rev. B 69, 153414 (2004).CrossRefGoogle Scholar
  171. 171.
    A. Hansson, M. Paulsson, and S. Stafstrom, Phys. Rev. B 62, 7639 (2000).CrossRefGoogle Scholar
  172. 172.
    S. B. Fagan, L. B. da Silva, and R. Mota, Nano Lett. 3, 289 (2003).CrossRefGoogle Scholar
  173. 173.
    S. L. Mielke, D. Troya, S. Zhang, J. L. Li, S. P. Xiao, R. Car, R. S. Ruoff, G. C. Schatz, and T. Belytschko, Chem. Phys. Lett. 390, 413 (2004).CrossRefGoogle Scholar
  174. 174.
    M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, and K. Kaski, Phys. Rev. B 70, 245416 (2004).CrossRefGoogle Scholar
  175. 175.
    J. Rossato, R. J. Baierle, A. Fazzio, and R. Mota, Nano Lett. 5, 197 (2005).CrossRefGoogle Scholar
  176. 176.
    R. Czerw, M. Terrones, J.-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Rühle, and D. L. Carroll, Nano Lett. 1, 457 (2001).CrossRefGoogle Scholar
  177. 177.
    R. H. Xie, Chem. Phys. Lett. 310, 379 (1993).CrossRefGoogle Scholar
  178. 178.
    Y.-H. Kim, Y. Zhao, A. Williamson, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. 96, 016102 (2006).CrossRefGoogle Scholar
  179. 179.
    E. Hernández, P. Ordejón, I. Boustani, A. Rubio, and J. A. Alonso, J. Chem. Phys. 113, 3814 (2000).CrossRefGoogle Scholar
  180. 180.
    W. Q. Tian, L. V. Liu, and Y. A. Wang, Phys. Chem. Chem. Phys. 8, 3528 (2006).CrossRefGoogle Scholar
  181. 181.
    S. H. Yang, W. H. Shin, J. W. Lee, S. Y. Kim, S. I. Woo, and J. K. Kang, J. Phys. Chem. B 110, 13941 (2006).CrossRefGoogle Scholar
  182. 182.
    P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).CrossRefGoogle Scholar
  183. 183.
    G. Mpourmpakis, G. E. Froudakis, A. N. Andriotis, and M. Menon, Appl. Phys. Lett. 87, 193105 (2005).CrossRefGoogle Scholar
  184. 184.
    L. V. Liu, W. Q. Tian, and Y. A. Wang, J. Phys. Chem. B 110, 13037 (2006).CrossRefGoogle Scholar
  185. 185.
    A. J. Lu and B. C. Pan, Phys. Rev. B 71, 165416 (2005).CrossRefGoogle Scholar
  186. 186.
    K. Fukui, Science 218, 747 (1987).CrossRefGoogle Scholar
  187. 187.
    W. Q. Tian and Y. A. Wang, J. Chem. Theory Comput. 1, 353 (2005).CrossRefGoogle Scholar
  188. 188.
    N. Rega, S. S. Iyengar, G. A. Voth, H. B. Schlegel, T. Vreven, and M. J. Frisch, J. Phys. Chem. B 108, 4210 (2004).CrossRefGoogle Scholar
  189. 189.
    C. K. Kohlmiller and L. Andrews, J. Am. Chem. Soc. 103, 2578 (1981).CrossRefGoogle Scholar
  190. 190.
    M. L. McKee and C. M. Rohlfing, J. Am. Chem. Soc. 111, 2497 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Wei Quan Tian
    • 1
  • Lei Vincent Liu
    • 2
  • Ya Kun Chen
    • 2
  • Yan Alexander Wang
    • 2
    Email author
  1. 1.State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical chemistryJilin UniversityChangchunChina
  2. 2.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations