Advertisement

Atomic-Scale Simulations of the Mechanical Behavior of Carbon Nanotube Systems

  • Byeong-Woo JeongEmail author
  • Susan B. Sinnott
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 9)

Abstract

Among the objects of nanomechanics studies, carbon nanotubes have attracted special interest due to their unique properties and potential use in a wide range of applications, including nanometer-scale devices and composite materials. In these applications the mechanical responses of the nanotubes can significantly affect the performance of the devices and materials. Therefore, characterizing and understanding their mechanical responses is necessary in order to optimize their utilization in these applications. Computational simulations are uniquely able to provide insights that are challenging to obtain experimentally. Molecular dynamics simulations in particular are popular for the examination of the mechanical responses of nanotubes.

This chapter provides a review of the background of molecular dynamics simulation methods, their role in the study of the nanomechanical responses of carbon nanotubes, and their important contributions to this emerging research field. Illustrative examples are presented that illustrate how these approaches are providing new and exciting insights into nanomechanical properties as elastic modulus or stiffness, fracture, and bucklng. Furthermore, the simulations indicate that filling or functionalization, combined loads, and external gases influence these properties. Thus, molecular dynamics simulation methods are revolutionizing our understanding of the mechanical behavior of nanotube systems at the most fundamental atomic level

Keywords

Molecular dynamics simulation Carbon nanotube Nanomechanics 

Notes

Acknowledgments

We acknowledge support from the Network for Computational Nanotechnology through National Science Foundation Grant No. EEC-0228390.

References

  1. 1.
    B. I. Yakobson, C. J. Brabec, and J. Bernholc, Physical Review Letters 76, 2511 (1996).CrossRefGoogle Scholar
  2. 2.
    H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nature 384, 147 (1996).CrossRefGoogle Scholar
  3. 3.
    F. N. Dzegilenko, D. Srivastava, and S. Saini, Nanotechnology 10, 253 (1999).CrossRefGoogle Scholar
  4. 4.
    A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, and A. Zettl, Nature 424, 408 (2003).CrossRefGoogle Scholar
  5. 5.
    J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, Science 287, 622 (2000).CrossRefGoogle Scholar
  6. 6.
    Y. Maniwa, K. Matsuda, H. Kyakuno, S. Ogasawara, T. Hibi, H. Kadowaki, S. Suzuki, Y. Achiba, and H. Kataura, Nature Materials 6, 135 (2007).CrossRefGoogle Scholar
  7. 7.
    J. C. Meyer, M. Paillet, and S. Roth, Science 309, 1539 (2005).CrossRefGoogle Scholar
  8. 8.
    G. Nagy, M. Levy, R. Scarmozzino, R. M. Osgood Jr, H. Dai, R. E. Smalley, C. A. Michaels, G. W. Flynn, and G. F. McLane, Applied Physics Letters 73, 529 (1998).CrossRefGoogle Scholar
  9. 9.
    S. J. Papadakis, A. R. Hall, P. A. Williams, L. Vicci, M. R. Falvo, R. Superfine, and S. Washburn, Physical Review Letters 93, 146101 (2004).CrossRefGoogle Scholar
  10. 10.
    P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science 283, 1513 (1999).CrossRefGoogle Scholar
  11. 11.
    V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias and P. L. McEuen, Nature 431, 284 (2004).CrossRefGoogle Scholar
  12. 12.
    P. A. Williams, S. J. Papadakis, A. M. Patel, M. R. Falvo, S. Washburn, and R. Superfine, Applied Physics Letters 82, 805 (2003).CrossRefGoogle Scholar
  13. 13.
    S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, Nature 394, 52 (1998).CrossRefGoogle Scholar
  14. 14.
    S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber, Applied Physics Letters 73, 3465 (1998).CrossRefGoogle Scholar
  15. 15.
    R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297, 787 (2002).CrossRefGoogle Scholar
  16. 16.
    M. Arroyo, and T. Belytschko, Physical Review Letters 91, 215505 (2003).CrossRefGoogle Scholar
  17. 17.
    M. J. Buehler, Y. Kong, and H. Gao, Journal of Engineering Materials and Technology 126, 245 (2004).CrossRefGoogle Scholar
  18. 18.
    G. Cao, and X. Chen, Physical Review B 73, 155435 (2006).CrossRefGoogle Scholar
  19. 19.
    K. Chandraseker, and S. Mukherjee, Journal of Applied Mechanics 73, 315 (2006).CrossRefGoogle Scholar
  20. 20.
    D. Danailov, P. Keblinski, S. Nayak, and P. M. Ajayan, Journal of Nanoscience and Nanotechnology 2, 503 (2002).CrossRefGoogle Scholar
  21. 21.
    M. Huhtala, A. V. Krasheninnikov, J. Aittoniemi, S. J. Stuart, K. Nordlund, and K. Kaski, Physical Review B 70, 45404 (2004).CrossRefGoogle Scholar
  22. 22.
    S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, The Journal of Chemical Physics 104, 2089 (1996).CrossRefGoogle Scholar
  23. 23.
    A. Kutana, and K. P. Giapis, Physical Review Letters 97, 245501 (2006).CrossRefGoogle Scholar
  24. 24.
    K. M. Liew, C. H. Wong, and M. J. Tan, Applied Physics Letters 87, 041901 (2005).CrossRefGoogle Scholar
  25. 25.
    S. L. Mielke, D. Troya, S. Zhang, J. L. Li, S. Xiao, R. Car, R. S. Ruoff, G. C. Schatz, and T. Belytschko, Chemical Physics Letters 390, 413 (2004).CrossRefGoogle Scholar
  26. 26.
    T. Ozaki, Y. Iwasa, and T. Mitani, Physical Review Letters 84, 1712 (2000).CrossRefGoogle Scholar
  27. 27.
    L. Wang, and H. Hu, Physical Review B 71, 195412 (2005).CrossRefGoogle Scholar
  28. 28.
    P. Zhang, Y. Huang, P. H. Geubelle, P. A. Klein, and K. C. Hwang, International Journal of Solids and Structures 39, 3893 (2002).CrossRefGoogle Scholar
  29. 29.
    S. L. Zhang, S. L. Mielke, R. Khare, D. Troya, R. S. Ruoff, G. C. Schatz, and T. Belytschko, Physical Review B 71, 115403 (2005).CrossRefGoogle Scholar
  30. 30.
    S. J. Heo, and S. B. Sinnott, Journal of Nanoscience and Nanotechnology 7, 1518 (2007).CrossRefGoogle Scholar
  31. 31.
    B. W. Jeong, and J. K. Lim, Transactions of the KSME (A) 30, 809 (2006).Google Scholar
  32. 32.
    B. W. Jeong, and J. K. Lim, Transactions of the KSME (A) 31, 862 (2007).Google Scholar
  33. 33.
    B. W. Jeong, J. K. Lim, and S. B. Sinnott, Journal of Applied Physics 101, 084309 (2007).CrossRefGoogle Scholar
  34. 34.
    B. W. Jeong, J. K. Lim, and S. B. Sinnott, Applied Physics Letters 91, 093102 (2007).CrossRefGoogle Scholar
  35. 35.
    B. W. Jeong, J. K. Lim, and S. B. Sinnott, Applied Physics Letters 92, 253114 (2008).CrossRefGoogle Scholar
  36. 36.
    B. Ni, S. B. Sinnott, P. T. Mikulski, and J. A. Harrison, Physical Review Letters 88, 205505 (2002).CrossRefGoogle Scholar
  37. 37.
    S. B. Sinnott, O. A. Shenderova, C. T. White, and D. W. Brenner, Carbon 36, 1 (1998).CrossRefGoogle Scholar
  38. 38.
    T. Belytschko, S. P. Xiao, G. C. Schatz, and R. S. Ruoff, Physical Review B 65, 235430 (2002).CrossRefGoogle Scholar
  39. 39.
    B. W. Jeong, J. K. Lim, and S. B. Sinnott, Applied Physics Letters 90, 023102 (2007).CrossRefGoogle Scholar
  40. 40.
    B. W. Jeong, J. K. Lim, and S. B. Sinnott, Nanotechnology 18, 485715 (2007).CrossRefGoogle Scholar
  41. 41.
    M. A. L. Marques, H. E. Troiani, M. Miki-Yoshida, M. Jose-Yacaman, and A. Rubio, Nano Letters 4, 811 (2004).CrossRefGoogle Scholar
  42. 42.
    M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, and K. Kaski, Physical Review B 70, 245416 (2004).CrossRefGoogle Scholar
  43. 43.
    D. Srivastava, C. Wei, and K. Cho, Applied Mechanics Reviews 56, 215 (2003).CrossRefGoogle Scholar
  44. 44.
    C. Wei, K. Cho, and D. Srivastava, Physical Review B 67, 115407 (2003).CrossRefGoogle Scholar
  45. 45.
    B. I. Yakobson, M. P. Campbell, C. J. Brabec, and J. Bernholc, Computational Materials Science 8, 341 (1997).CrossRefGoogle Scholar
  46. 46.
    L. G. Zhou, and S. Q. Shi, Computational Materials Science 23, 166 (2002).CrossRefGoogle Scholar
  47. 47.
    A. Garg, J. Han, and S. B. Sinnott, Physical Review Letters 81, 2260 (1998).CrossRefGoogle Scholar
  48. 48.
    A. Garg, and S. B. Sinnott, Physical Review B 60, 13786 (1999).CrossRefGoogle Scholar
  49. 49.
    A. Garg, and S. B. Sinnott, Chemical Physics Letters 295, 273 (1998).CrossRefGoogle Scholar
  50. 50.
    Z. G. Mao, A. Garg, and S. B. Sinnott, Nanotechnology 10, 273 (1999).CrossRefGoogle Scholar
  51. 51.
    H. Trotter, R. Phillips, B. Ni, Y. H. Hu, S. B. Sinnott, P. T. Mikulski, and J. A. Harrison, Journal of Nanoscience and Nanotechnology 5, 536 (2005).CrossRefGoogle Scholar
  52. 52.
    K. H. Lee, P. Keblinski, and S. B. Sinnott, Nano Letters 5, 263 (2005).CrossRefGoogle Scholar
  53. 53.
    S. J. Heo, and S. B. Sinnott, Journal of Applied Physics 102, 064307 (2007).CrossRefGoogle Scholar
  54. 54.
    I. Jang, S. B. Sinnott, D. Danailov, and P. Keblinski, Nano Letters 4, 109 (2004).CrossRefGoogle Scholar
  55. 55.
    B. Ni, and S. B. Sinnott, Surface Science 487, 87 (2001).CrossRefGoogle Scholar
  56. 56.
    S. K. Pregler, B. W. Jeong, and S. B. Sinnott, Composites Science and Technology 68, 2049 (2008).CrossRefGoogle Scholar
  57. 57.
    S. K. Pregler, and S. B. Sinnott, Physical Review B 73, 224106 (2006).CrossRefGoogle Scholar
  58. 58.
    W. G. Sawyer, S. S. Perry, S. R. Phillpot, and S. B. Sinnott, Journal of Physics Condensed Matter 20, 354012 (2008).CrossRefGoogle Scholar
  59. 59.
    B. J. Alder, and T. E. Wainwright, The Journal of Chemical Physics 27, 1208 (2004).CrossRefGoogle Scholar
  60. 60.
    B. J. Alder, and T. E. Wainwright, The Journal of Chemical Physics 31, 459 (2004).CrossRefGoogle Scholar
  61. 61.
    M. P. Allen, and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).Google Scholar
  62. 62.
    M. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, Oxford, 2003).CrossRefGoogle Scholar
  63. 63.
    D. Frenkel, and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, New York, 2002).Google Scholar
  64. 64.
    J. M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley, New York, 1992).Google Scholar
  65. 65.
    G. C. Abell, Physical Review B 31, 6184 (1985).CrossRefGoogle Scholar
  66. 66.
    J. Tersoff, Physical Review Letters 56, 632 (1986).CrossRefGoogle Scholar
  67. 67.
    J. Tersoff, Physical Review Letters 61, 2879 (1988).CrossRefGoogle Scholar
  68. 68.
    D. W. Brenner, Physical Review B 42, 9458 (1990).CrossRefGoogle Scholar
  69. 69.
    D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, Journal of Physics Condensed Matter 14, 783 (2002).CrossRefGoogle Scholar
  70. 70.
    F. H. Stillinger, and T. A. Weber, Physical Review B 31, 5262 (1985).CrossRefGoogle Scholar
  71. 71.
    M. S. Daw, and M. I. Baskes, Physical Review Letters 50, 1285 (1983).CrossRefGoogle Scholar
  72. 72.
    S. M. Foiles, Physical Review B 32, 3409 (1985).CrossRefGoogle Scholar
  73. 73.
    M. I. Baskes, Physical Review B 46, 2727 (1992).CrossRefGoogle Scholar
  74. 74.
    M. I. Baskes, J. S. Nelson, and A. F. Wright, Physical Review B 40, 6085 (1989).CrossRefGoogle Scholar
  75. 75.
    K. Ohno, K. Esfarjani, and Y. Kawazoe, Computational Materials Science: From Ab Initio to Monte Carlo Methods (Springer, Berlin, 1999).Google Scholar
  76. 76.
    A. K. Rappe, and W. A. Goddard III, The Journal of Physical Chemistry 95, 3358 (1991).CrossRefGoogle Scholar
  77. 77.
    S. J. Stuart, A. B. Tutein, and J. A. Harrison, The Journal of Chemical Physics 112, 6472 (2000).CrossRefGoogle Scholar
  78. 78.
    J. E. Lennard-Jones, Proceedings of the Physical Society 43, 461 (1931).CrossRefGoogle Scholar
  79. 79.
    H. C. Andersen, The Journal of Chemical Physics 72, 2384 (1980).CrossRefGoogle Scholar
  80. 80.
    S. Nose, The Journal of Chemical Physics 81, 511 (1984).CrossRefGoogle Scholar
  81. 81.
    W. G. Hoover, Physical Review A 31, 1695 (1985).CrossRefGoogle Scholar
  82. 82.
    J. E. Shigley, and C. R. Mischke, Mechanical Engineering Design (McGraw Hill Publishing Company, Singapore, 2001).Google Scholar
  83. 83.
    A. C. Ugural, and S. K. Fenster, Advanced Strength And Applied Elasticity (Prentice-Hall Publishing, Englewood Cliffs, NJ, 2003).Google Scholar
  84. 84.
    J. P. Lu, Physical Review Letters 79, 1297 (1997).CrossRefGoogle Scholar
  85. 85.
    B. WenXing, Z. ChangChun, and C. WanZhao, Physica B: Physics of Condensed Matter 352, 156 (2004).CrossRefGoogle Scholar
  86. 86.
    D. H. Robertson, D. W. Brenner, and J. W. Mintmire, Physical Review B 45, 12592 (1992).CrossRefGoogle Scholar
  87. 87.
    E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Physical Review Letters 80, 4502 (1998).CrossRefGoogle Scholar
  88. 88.
    M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).CrossRefGoogle Scholar
  89. 89.
    M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Physical Review Letters 84, 5552 (2000).CrossRefGoogle Scholar
  90. 90.
    M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287, 637 (2000).CrossRefGoogle Scholar
  91. 91.
    B. W. Smith, and D. E. Luzzi, Chemical Physics Letters 321, 169 (2000).CrossRefGoogle Scholar
  92. 92.
    R. K. Saini, I. W. Chiang, H. Q. Peng, R. E. Smalley, W. E. Billups, R. H. Hauge, and J. L. Margrave, Journal of the American Chemical Society 125, 3617 (2003).CrossRefGoogle Scholar
  93. 93.
    P. A. Williams, S. J. Papadakis, A. M. Patel, M. R. Falvo, S. Washburn, and R. Superfine, Physical Review Letters 89, 255502 (2002).CrossRefGoogle Scholar
  94. 94.
    P. C. Andia, F. Costanzo, and G. L. Gray, Modelling and Simulation in Materials Science and Engineering 14, 741 (2006).CrossRefGoogle Scholar
  95. 95.
    K. S. Cheung, and S. Yip, Journal of Applied Physics 70, 5688 (1991).CrossRefGoogle Scholar
  96. 96.
    D. H. Tsai, The Journal of Chemical Physics 70, 1375 (1979).CrossRefGoogle Scholar
  97. 97.
    M. Zhou, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 459, 2347 (2003).CrossRefGoogle Scholar
  98. 98.
    C. F. Cornwell, and L. T. Wille, The Journal of Chemical Physics 109, 763 (1998).CrossRefGoogle Scholar
  99. 99.
    H. Dai, N. Franklin, and J. Han, Applied Physics Letters 73, 1508 (1998).CrossRefGoogle Scholar
  100. 100.
    J. A. Harrison, S. J. Stuart, D. H. Robertson, and C. T. White, Journal of Physical Chemistry B 101, 9682 (1997).CrossRefGoogle Scholar
  101. 101.
    S. P. Timoshenko, and J. M. Gere, Theory of Elastic Stability (McGraw Hill, New York, 1961).Google Scholar
  102. 102.
    S.-J. Heo, and S. B. Sinnott, (in review).Google Scholar
  103. 103.
    J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon, Science 282, 95 (1998).CrossRefGoogle Scholar
  104. 104.
    S. J. Heo, and S. B. Sinnott, (in review).Google Scholar
  105. 105.
    T. Cohen-Karni, L. Segev, O. Srur-Lavi, S. R. Cohen, and E. Joselevich, Nature Nanotechnology 1, 36 (2006).CrossRefGoogle Scholar
  106. 106.
    A. R. Hall, L. An, J. Liu, L. Vicci, M. R. Falvo, R. Superfine, and S. Washburn, Physical Review Letters 96, 256102 (2006).CrossRefGoogle Scholar
  107. 107.
    Y. M. Ying, R. K. Saini, F. Liang, A. K. Sadana, and W. E. Billups, Organic Letters 5, 1471 (2003).CrossRefGoogle Scholar
  108. 108.
    C. Q. Ru, Journal of the Mechanics and Physics of Solids 49, 1265 (2001).CrossRefGoogle Scholar
  109. 109.
    B. Popescu, and D. H. Hodges, International Journal of Non-Linear Mechanics 34, 709 (1999).CrossRefGoogle Scholar
  110. 110.
    M. K. Hurst, Prestressed Concrete Design (Taylor & Francis, New York, 1998).Google Scholar
  111. 111.
    D. Zhou, M. Kamlah, and D. Munz, Journal of the European Ceramic Society 25, 425 (2005).CrossRefGoogle Scholar
  112. 112.
    J. A. Connally, Torsion of a Thin Rectangular Beam with Axial Prestress and Ends Constrained From Warping (Massachusetts Institute of Technology, Cambridge, MA, 1986).Google Scholar
  113. 113.
    M. A. Biot, Journal of Applied Physics 10, 860 (1939).CrossRefGoogle Scholar
  114. 114.
    H. Kolsky, and A. C. Pipkin, Archive of Applied Mechanics (Ingenieur Archiv) 49, 337 (1980).Google Scholar
  115. 115.
    N. Wang, I. M. Tolic-Norrelykke, J. Chen, S. M. Mijailovich, J. P. Butler, J. J. Fredberg, and D. Stamenovic, American Journal of Physiology. Cell Physiology 282, 606 (2002).Google Scholar
  116. 116.
    E. Joselevich, Chemphyschem : A European Journal of Chemical Physics and Physical Chemistry 7, 1405 (2006).Google Scholar
  117. 117.
    H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, Physical Review Letters 87, 211801 (2001).CrossRefGoogle Scholar
  118. 118.
    A. K. Geim, and K. S. Novoselov, Nature Materials 6, 183 (2007).CrossRefGoogle Scholar
  119. 119.
    D. Qian, W. K. Liu, and R. S. Ruoff, Composites Science and Technology 63, 1561 (2003).CrossRefGoogle Scholar
  120. 120.
    W. K. Liu, S. Jun, and D. Qian, Journal of Computational and Theoretical Nanoscience 5, 970 (2008).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Mechanical Engineering, Yeungjin CollegeTaeguAsian
  2. 2.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations