Skip to main content

Boundary Element Analysis of Gradient Elastic Problems

  • Chapter
Recent Advances in Boundary Element Methods

Abstract

A boundary element method (BEM), suitable for solving two dimensional (2D) and three dimensional (3D) gradient elastic problems under static loading, is presented. The simplified Form-II gradient elastic theory (a simple version of Mindlin’s Form II general gradient elastic theory) is employed and the corresponding fundamental solution is exploited for the formulation of the integral representation of the problem. Three noded quadratic line and eight noded quadratic quadrilateral boundary elements are utilized and the discretization is restricted only to the boundary. The boundary element methodology is explained and presented. The importance of satisfying the correct boundary conditions, being compatible with Mindlin’s theory is demonstrated with a simple example. Three numerical examples are reported to illustrate the method and exhibit its merits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aifantis EC (1992): On the role of gradients in the localization of deformation and fracture, Int. J. Eng. Sci., Vol. 30, pp. 1279–1299.

    Article  MATH  Google Scholar 

  • Akarapu S, Zbib HM (2006): Numerical analysis of plane cracks in strain-gradient elastic materials, Int. J. Fract., Vol. 141, pp. 403–430.

    Article  Google Scholar 

  • Amanatidou E, Aravas N (2002): Mixed finite element formulations of strain-gradient elasticity problems, Comput. Methods Appl. Mech. Engng., Vol. 191, pp. 1723–1751.

    Article  MATH  Google Scholar 

  • Amanatidou E, Giannakopoulos A, Aravas N (2005): Finite element models of strain-gradient elasticity: accuracy and error estimates. In: G. Georgiou, P. Papanastasiou, M. Papadrakakis (Eds), Proceedings of 5th GRACM International Congress on Computational Mechanics, University of Cyprus, Nicosia, pp. 797–804.

    Google Scholar 

  • Askes H, Gutierrez MA (2006): Implicit gradient elasticity, Int. J. Numer. Meth. Eng., Vol. 67, pp. 400–416.

    Article  MATH  MathSciNet  Google Scholar 

  • Barenblatt GI (1962): Mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., Vol. 7, pp. 55–129.

    Article  MathSciNet  Google Scholar 

  • Casal P (1972): La theorie du second gradient et la capillarite, C.R. Acad. Sc. A247, pp. 1571–1574.

    Google Scholar 

  • Chen CP, Fleck NA (2002) Size effects in the constrained deformation of metallic foams, J. Mech. Phys. Solids., Vol. 50, pp. 955–977.

    Article  MATH  Google Scholar 

  • Chen CP, Lakes RS (1989) Dynamic wave dispersion and loss properties of conventional and negative Poisson’s ratio polymeric cellular polymers. Cell. Polym., Vol. 8, pp. 343–369

    Google Scholar 

  • Dessouky S, Masad E, Little D, Zbib H (2006): Finite-element analysis of hot mix asphalt microstructure using effective local material properties and strain gradient elasticity, J. Eng. Mech., Vol. 132, pp. 158–171.

    Article  Google Scholar 

  • Dessouky S, Masad E, Zbib H, Little D (2003): Gradient elasticity finite element model for the microstructure analysis of asphaltic materials, In: K. J. Bathe (Ed.), Computational Fluid and Solid Mechanics, Elsevier, London, pp. 228–233.

    Google Scholar 

  • Dillard T, Forest S, Ienny P (2006) Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams, Eur. J. Mech. A/Solids, Vol. 25, pp. 526–549.

    Article  MATH  Google Scholar 

  • Engel G, Garikipati K, Hughes TJR, Larson MG, Mazzei L, Taylor RL (2002): Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Meth. Appl. Mech. Eng., Vol. 191, pp. 3669–3750.

    Article  MATH  MathSciNet  Google Scholar 

  • Eringen AC (1992): Vistas of nonlocal continuum physics, Int. J. Eng. Sci., Vol. 30, No. 10, pp. 1551–1565.

    Article  MATH  MathSciNet  Google Scholar 

  • Eringen C (1999): Microcontinuum Field Theories I: Foundations and Solids, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Exadaktylos GE, Vardoulakis I (1998): Surface instability in gradient elasticity with surface energy, Int. J. Solids Struct., Vol. 35, No. 18, pp. 2251–2281.

    Article  MATH  MathSciNet  Google Scholar 

  • Exadaktylos GE, Vardoulakis I (2001): Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics. Tectonophysics, Vol. 335, pp. 81–109.

    Article  Google Scholar 

  • Fleck NA, Hutchinson JW (1997): Strian gradient plasticity. Hutchinson, J.W., Wu, T.Y. (Eds.), Advances in Applied Mechanics, Academic Press, New York, Vol. 33, pp. 295–361.

    Google Scholar 

  • Fleck NA, Hutchinson JW (2001): A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, Vol. 49, pp. 2245–2271.

    Article  MATH  Google Scholar 

  • Georgiadis HG, Anagnostou DS (2008): Problems of the Flamant–Boussinesq and Kelvin type in dipolar gradient elasticity, J. Elasticity, Vol. 90, pp. 71–98.

    Article  MATH  MathSciNet  Google Scholar 

  • Green AE, Rivlin RS (1964): Multipolar continuum mechanics, Arch. Ration. Mech. Anal., Vol. 17, pp. 113–147.

    Article  MATH  MathSciNet  Google Scholar 

  • Imatani S, Hataday K, Maugin GA (2005): Finite element analysis of crack problems for strain gradient material model, Philos. Mag.., Vol. 85, No. 33–35, pp. 4245–4256.

    Article  Google Scholar 

  • Karlis GF, Tsinopoulos SV, Polyzos D, Beskos DE (2007): Boundary element analysis of mode I and mixed mode (I and II) crack problems of 2-D gradient elasticity, Comput. Meth. Appl. Mech. Eng., Vol. 196, pp. 5092–5103.

    Article  Google Scholar 

  • Karlis GF, Tsinopoulos SV, Polyzos D, Beskos DE (2008): 2D and 3D Boundary Element Analysis of Mode-I Cracks in Gradiend Elasticity, CMES-Computer Modeling in Engineering & Sciences, Vol. 26, No.3, pp. 189–208.

    Google Scholar 

  • Lakes RS (1983): Size effects and micromechanics of a porous solid, J. Mater. Sci. Vol. 18, pp. 2572–2580.

    Article  Google Scholar 

  • Lakes RS (1986): Experimental microelasticity of two porous solids, Int. J. Solids Struct., Vol. 22, pp. 55–63.

    Article  Google Scholar 

  • Lakes RS (1995): Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: H. Muhlhaus (Ed) Continuum Models for Materials with Microstructure, J. Wiley, New York, pp. 1–22.

    Google Scholar 

  • Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003): Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, Vol. 51, pp. 1477–1508.

    Article  MATH  Google Scholar 

  • Li S, Miskioglu I, Altan BS (2004): Solution to line loading of a semi-infinite solid in gradient elasticity, Int. J. Solids Struct., Vol. 41, pp. 3395–3410.

    Article  MATH  Google Scholar 

  • Lloyd DJ (1994): Particle-reinforced aluminum and magnesium matrix composites, Int. Mater. Rev., Vol. 39, pp. 1–23.

    Google Scholar 

  • Markolefas SI, Tsouvalas DA, Tsamasphyros GI (2007): Theoretical analysis of a class of mixed, C 0 continuity formulations for general dipolar gradient elasticity boundary value problems, Int. J. Solids Struct., Vol. 44, pp. 546–572.

    Article  MATH  MathSciNet  Google Scholar 

  • Mindlin RD (1964): Micro-structure in linear elasticity, Arch. Rat. Mech. Anal., Vol. 16, pp. 51–78.

    Article  MATH  MathSciNet  Google Scholar 

  • Mindlin RD (1965): Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., Vol. 1, pp. 417–438.

    Google Scholar 

  • Mindlin RD, Eshel NN (1968): On first strain-gradient theories in linear elasticity, Int. J. Solids Struct.,Vol. 4, pp. 109–124.

    Article  MATH  Google Scholar 

  • Nan CW, Clarke DR (1996) The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites, Acta Mater., Vol. 44, pp. 3801–3811.

    Article  Google Scholar 

  • Peerlings RHJ, Fleck NA (2004): Computational evaluation of strain gradient elasticity constants, Int. J. Multiscale Comput. Eng., Vol. 2, No. 4, pp. 599–619.

    Article  Google Scholar 

  • Polyzos D (2005): 3D frequency domain BEM for solving dipolar gradient elastic problems, Comput. Mech., Vol. 35, pp. 292–304.

    Article  MATH  MathSciNet  Google Scholar 

  • Polyzos D, Tsepoura KG, Beskos DE (2005): Transient dynamic analysis of 3-D gradient elastic solids by BEM, Comput. Struct., Vol. 83, pp. 783–792.

    Google Scholar 

  • Polyzos D, Tsepoura KG, Tsinopoulos SV, Beskos DE (2003): A boundary element method for solving 2-D and 3-D static gradient elastic problems. Part I: Integral formulation, Comput. Meth. Appl. Mech. Eng., Vol. 192, pp. 2845–2873.

    Article  MATH  MathSciNet  Google Scholar 

  • Ru CQ, Aifantis EC (1993): A simple approach to solve boundary value problems in gradient elasticity, Acta Mechanica, Vol. 101, pp. 59–68.

    Article  MATH  MathSciNet  Google Scholar 

  • Shu JY, King WE, Fleck NA (1999): Finite elements for materials with strain gradient effects, Int. J. Numer. Meth. Eng. Vol. 44, pp. 373–391.

    Article  MATH  Google Scholar 

  • Smyshlyaev VP, Fleck NA (1996): The role of strain gradients in grain size effect for polycrystals, J. Mech. Phys. Solids, Vol. 44, pp. 465–495.

    Article  MATH  MathSciNet  Google Scholar 

  • Soh AK, Wanji C (2004): Finite element formulations of strain gradient theory for microstructures and the C 0-1 patch test, Int. J. Numer. Meth. Eng., Vol. 61, pp. 433–454.

    Article  MATH  MathSciNet  Google Scholar 

  • Tang Z, Shen S, Atluri SN (2003): Analysis of materials with strain-gradient effects: A meshless local Petrov-Galerkin (MLPG) approach, with nodal displacements only, Comput. Model. Eng. Sci., Vol. 4, pp. 177–196.

    MATH  Google Scholar 

  • Tenek LT, Aifantis EC (2002): A two-dimensional finite element implementation of a special form of gradient elasticity, Comput. Model. Eng., Sci., Vol. 3, pp. 731–741.

    MATH  MathSciNet  Google Scholar 

  • Tiersten HF, Bleustein JL (1974): Generalized elastic continua. In: G. Hermann (Ed), Mindlin RD and Applied Mechanics. Pergamon Press, New York, pp. 67–103.

    Google Scholar 

  • Tsepoura KG, Papargyri-Beskou S, Polyzos D (2002): A boundary element method for solving 3-D static gradient elastic problems with surface energy, Comput. Mech., Vol. 29, pp. 361–381.

    Article  MATH  Google Scholar 

  • Tsepoura KG, Polyzos D (2003): Static and harmonic BEM solutions of gradient elasticity problems with axisymmetry, Comput. Mech., Vol. 32, pp. 89–103.

    Article  MATH  Google Scholar 

  • Tsepoura KG, Tsinopoulos SV, Polyzos D, Beskos DE (2003): A boundary element method for solving 2-D and 3-D static gradient elastic problems. Part II: Numerical implementation, Comput. Meth. Appl. Mech. Eng., Vol. 192, pp. 2875–2907.

    Article  MATH  MathSciNet  Google Scholar 

  • Van Vliet MRA, Van Mier JGM (1999): Effect of strain gradients on the size effect of concrete in uniaxial tension, Int. J. Fracture, Vol. 95, pp. 195–219.

    Article  Google Scholar 

  • Vardoulakis I, Exadaktylos G, Aifantis E (1996): Gradient elasticity with surface energy: Mode-III crack problem, Int. J. Solids Struct., Vol. 33, pp. 4531–4559.

    Article  MATH  Google Scholar 

  • Vardoulakis I, Sulem J (1995): Bifurcation Analysis in Geomechanics. Blackie/Chapman and Hall, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Polyzos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Karlis, G., Tsinopoulos, S., Polyzos, D. (2009). Boundary Element Analysis of Gradient Elastic Problems. In: Manolis, G.D., Polyzos, D. (eds) Recent Advances in Boundary Element Methods. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9710-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9710-2_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9709-6

  • Online ISBN: 978-1-4020-9710-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics