Advertisement

Interactions among human behavior, social networks, and societal infrastructures: A Case Study in Computational Epidemiology

  • Christopher L. BarrettEmail author
  • Keith Bisset
  • Jiangzhuo Chen
  • Stephen Eubank
  • Bryan Lewis
  • V. S. Anil Kumar
  • Madhav V. Marathe
  • Henning S. Mortveit
Chapter

Abstract

Human behavior, social networks, and the civil infrastructures are closely intertwined. Understanding their co-evolution is critical for designing public policies and decision support for disaster planning. For example, human behaviors and day to day activities of individuals create dense social interactions that are characteristic of modern urban societies. These dense social networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s behavior in response to public policies and their perception of how the crisis is unfolding as a result of disease outbreak can dramatically alter the normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. In this chapter, we describe a computer simulation based approach to study these issues using public health and computational epidemiology as an illustrative example. We also formulate game-theoretic and stochastic optimization problems that capture many of the problems that we study empirically.

Keywords

interaction-based computing theory of simulations agent-based models biological socio-technical and information systems urban infrastructures discrete dynamical systems computational complexity combinatorial algorithms 

References

  1. [1]
    J. Aspnes, S. Chang, and Yampolskiy. Inoculation strategies for victims of viruses and the sum-of-squares partition problem. J. Comput. Syst. Sci., 72(6):1077–1093, 2006. CrossRefMathSciNetGoogle Scholar
  2. [2]
    V. Bala and S. Goyal. A non-cooperative model of network formation. Econometrica, 68 (5):1181–1231, 2000. CrossRefMathSciNetGoogle Scholar
  3. [3]
    C. Barrett, J. Smith, and S. Eubank. Modern epidemiology modeling. Scientific American, 292(3):54–61, 2005. CrossRefGoogle Scholar
  4. [4]
    C. L. Barrett, R. J. Beckman, K. P. Berkbigler, K. R. Bisset, B. W. Bush, K. Campbell, S. Eubank, K. M. Henson, J. M. Hurford, D. A. Kubicek, M. V. Marathe, P. R. Romero, J. P. Smith, L. L. Smith, P. L. Speckman, P. E. Stretz, G. L. Thayer, E. V. Eeckhout, and M. D. Williams. Transims: Transportation analysis simulation system. Technical Report LA-UR-00-1725, Los Alamos National Laboratory Unclassified Report, 2001. Google Scholar
  5. [5]
    C. L. Barrett, K. Bisset, S. Eubank, V. S. A. Kumar, M. V. Marathe, and H. S. Mortveit. Modeling and simulation of large biological and information and socio-technical systems: An interaction-based approach. In Proc. Short Course on Modeling and Simulation of Biological Networks, AMS Lecture Notes, Series: PSAPM, 2007. Google Scholar
  6. [6]
    C. Barrett, K. Bisset, J. Chen, B. Lewis, S. Eubank, V. S. A. Kumar, M. Marathe, and H. Mortveit. Effect of public policies and individual behavior on the co-evolution of social networks and infectious disease dynamics. In Proc. DIMACS DyDAn Workshop on Computational Methods for Dynamic Interaction Networks, 2007. Google Scholar
  7. [7]
    C. Bauch and D. Earn. Vaccination and the theory of games. Proc. Natl. Acad. Sci., 101(36):13391–13394, 2004. CrossRefMathSciNetGoogle Scholar
  8. [8]
    Y. Bramoulle, D. Lopez-Pintad, S. Goyal, and F. Vega-Redondo. Social interaction in anti-coordination games. International Journal of Game Theory, 33(1):1–19, 2004. zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    R. Breban, R. Vardavas, and S. Blower. Inductive reasoning games as influenza vaccination models: Mean field analysis. In arXriv: q-bio.PE/0608016, 2006.
  10. [10]
    N. Durlauf and P. Young. Social Dynamics. MIT Press, Cambridge, 2001. zbMATHGoogle Scholar
  11. [11]
    G. Ellison. Learning, local interaction, and coordination. Econometrica, 61:1047–1071, 1993. zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    M. Emirbayer and J. Goodwin. Network analysis, culture and the problem of agency. American Journal of Sociology, 99:1411–1454, 1994. CrossRefGoogle Scholar
  13. [13]
    J. Epstein, J. Parker, and D. Cummings. Coupled contagion dynamics of fear and disease: A behavioral basis for the 1918 epidemic waves: Mathematical and computational explorations. Technical Report, Brookings Institute, 2006. Presentation made at the MIDAS meeting. Google Scholar
  14. [14]
    S. Eubank, H. Guclu, V. S. A. Kumar, M. Marathe, A. Srinivasan, Z. Toroczkai, and N. Wang. Modeling disease outbreaks in realistic urban social networks. Nature, 429:180–184, 2004. CrossRefGoogle Scholar
  15. [15]
    S. Eubank, V. S. A. Kumar, M. Marathe, A. Srinivasan, and N. Wang. Structural and algorithmic aspects of large social networks. In Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 711–720, 2004. Google Scholar
  16. [16]
    S. Eubank, V. S. A. Kumar, M. Marathe, A. Srinivasan, and N. Wang. Structure of social contact networks and their impact on epidemics. In AMS-DIMACS Special Volume on Epidemiology, 2005. Google Scholar
  17. [17]
    N. Fredkin. A Structural Theory of Social Influence. Cambridge University Press, Cambridge, 1998. Google Scholar
  18. [18]
    S. Goyal and F. Vega-Redondo. Learning, network formation, and coordination. Games and Economic Behavior, 50(2):178–207, 2005. zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    N. Immorlica, D. Karger, M. Minkoff, and V. S. Mirrokni. On the costs and benefits of procrastination: Approximation algorithms for stochastic combinatorial optimization problems. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 684–693, 2004. Google Scholar
  20. [20]
    D. Kempe, J. Kleinberg, and E. Tardos. Influential nodes in a diffusion model for social networks. In Proc. International Colloquium on Automata Programming and Languages (ICALP), pages 1127–1138, 2005. Google Scholar
  21. [21]
    M. Kermer. Integrating behavioral choice into epidemiological models of the aids epidemic. The Quarterly Journal Of Economics, CXI:549–573, 1996. CrossRefGoogle Scholar
  22. [22]
    P. Lazarsfeld and R. Merton. Friendship as social process. In T. Abel and C. Page, editors, Freedom and Control in Modern Society, Van Nostrand, New York, 1957. Google Scholar
  23. [23]
    R. Leenders. Models for network dynamics. J. Mathematical Sociology, 20:1–21, 1995. zbMATHGoogle Scholar
  24. [24]
    R. Leenders. Structure and influence, statistical models for the dynamics of actor attributes, network structure and their independence. PhD Thesis, Amsterdam, 1995. Google Scholar
  25. [25]
    M. Mavronicolas, V. Papadopoulou, A. Philippou, and P. Spirakis. A network game with attacker and protector entities. In Proceedings of the 16th Annual International Symposium on Algorithms and Computation (ISAAC 2005), volume 3827, pages 288–297, 2005. Google Scholar
  26. [26]
    T. Moscibroda and R. Wattenhofer. When selfish meets evil: Byzantine players in a virus inoculation game. In 25th Annual Symposium on Principles of Distributed Computing (PODC), pages 35–44, 2006. Google Scholar
  27. [27]
    C. Papadimitriou. Games against nature. Journal of Computer and System Sciences, 31:288–301, 1985. zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    R. Ravi and A. Sinha. Hedging uncertainty: Approximation algorithms for stochastic optimization problems. Math. Program., 108(1):97–114, 2006. CrossRefMathSciNetGoogle Scholar
  29. [29]
    T. Snijders, C. Steglich, and M. Schweinberger. Modeling the co-evolution of networks and behavior. In K. van Montfort, H. Oud and A. Satorra, editors, Longitudinal Models in the Behavioral and Related Sciences. Routledge/Taylor & Francis, New York, 2006. Google Scholar
  30. [30]
    C. Steglich, T. Snijders, and M. Pearson. Dynamic networks and behavior: Separating selection from influence. Technical Report, University of Groningen, The Netherlands, 2007. Available at http://stat.gamma.rug.nl/snijders/.
  31. [31]
    W. Stewart, J. Ricci, E. Chee, and D. Morganstein. Lost productive work time costs from health conditions in the United States: Results from the American productivity audit. Journal of Occupational & Environmental Medicine, 45(12):1234–1246, 2003. CrossRefGoogle Scholar
  32. [32]
    C. Swamy and D. Shmoys. Approximation algorithms for 2-stage stochastic optimization problems. ACM SIGACT News, 37(1):33–46, 2006. CrossRefGoogle Scholar
  33. [33]
    P. Young. Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Princeton University Press, Princeton, 1998. Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Christopher L. Barrett
    • 1
    Email author
  • Keith Bisset
    • 2
  • Jiangzhuo Chen
    • 2
  • Stephen Eubank
    • 3
  • Bryan Lewis
    • 4
  • V. S. Anil Kumar
    • 5
  • Madhav V. Marathe
    • 5
  • Henning S. Mortveit
    • 6
  1. 1.Department of Computer Science and Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics InstituteVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics InstituteVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  3. 3.Department of Physics, Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics InstituteVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  4. 4.Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics InstituteVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  5. 5.Department of Computer Science and Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics InstituteVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  6. 6.Department of Mathematics and Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics InstituteVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations