Advertisement

B-Cells and Antibodies in Old Humans

  • Kate L. Gibson
  • Deborah K. Dunn-Walters
Chapter
  • 1.4k Downloads

It has been well established that the efficiency of the immune system declines with increasing age. Immunosenescence causes increased susceptibility to infectious diseases, and infection is, in fact, the third leading cause of mortality in people aged 65 and over [1]. As is clearly apparent from the other chapters of this book, there are many components of the immune system that can change with age, and are crucial to maintaining an effective immune system. The humoral immune system interacts with the other components, both as part of its own development and via its effector mechanisms. The most important function of B-cells is to produce antibodies, the indispensable soluble effectors of many functions. There are a number of different stages of development for B-cells and their antibodies (Fig. 1).

Keywords

Respiratory Syncytial Virus Germinal Centre Influenza Vaccination Follicular Dendritic Cell Affinity Maturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Albright JF, Albright JW (2003) Aging, immunity, and infection. Humana Press, New JerseyCrossRefGoogle Scholar
  2. 2.
    Wing MG (1995) The molecular basis for a polyspecific antibody. Clin Exp Immunol 99:313–315PubMedGoogle Scholar
  3. 3.
    Brown JS, Hussell T, Gilliland SM et al (2002) The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci 99(26):16969–16974PubMedCrossRefGoogle Scholar
  4. 4.
    Arnaboldi PM, Behr MJ, Metzger DW (2005) Mucosal B cell deficiency in IgA-/- mice abrogates the development of allergic lung inflammation. J Immunol 175(2):1276–1285PubMedGoogle Scholar
  5. 5.
    Maglione PJ, Xu J, Chan J (2007) B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challengewith Mycobacterium tuberculosis. J Immunol 178(11):7222–7234PubMedGoogle Scholar
  6. 6.
    Fillatreau S, Sweenie CH, McGeachy MJ et al (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3(10):944–950PubMedCrossRefGoogle Scholar
  7. 7.
    Crawford A, Macleod M, Schumacher T et al (2006) Primary T cell expansion and differentiation in vivo requires antigen presentation by B cells. J Immunol 176(6):3498–3506PubMedGoogle Scholar
  8. 8.
    Lund FE, Hollifield M, Schuer K et al (2006) B cells are required for generation of protective effector and memory CD4 cells in response to Pneumocystis lung infection. J Immunol 176(10):6147–6154PubMedGoogle Scholar
  9. 9.
    Linton PJ, Harbertson J, Bradley LM (2000) A critcal role for B cells in the development of memory CD4 cells. J Immunol 165(10):5558–5565PubMedGoogle Scholar
  10. 10.
    Rivera A, Chen CC, Ron N et al (2001) Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. Int Immunol 13(12):1583–1593PubMedCrossRefGoogle Scholar
  11. 11.
    Barrett DJ, Ayoub EM (1986) IgG2 subclass restriction of antibody to pneumococcal polysaccharides. Clin Exp Immunol 63:127–134PubMedGoogle Scholar
  12. 12.
    Pichichero ME, Hall CB, Insel RA (1981) A mucosal antibody response following systemic Haemophilus influenzae type B infection in children. J Clin Invest 67:1482–1489PubMedCrossRefGoogle Scholar
  13. 13.
    Brieland JK, Heath LA, Huffnagle GB et al (1996) Humoral immunity and regulation of intrapulmonary growth of Legionella pneumophila in the immunocompetent host. J Immunol 157(11):5002–5008PubMedGoogle Scholar
  14. 14.
    Peterson EM, de la Maza LM, Brade L et al (1998) Characterization of a neutralizing monoclonal antibody directed at the lipopolysaccharide of Chlamydia pneumoniae. Infect Immun 66(8):3848–3855PubMedGoogle Scholar
  15. 15.
    Smith TJ, Chase ES, Schmidt TJ, et al (1996) Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature 383(6598):350–354PubMedCrossRefGoogle Scholar
  16. 16.
    Zhong X, Yang H, Guo ZF, et al (2005) B-cell responses in patients who have recovered from severe acute respiratory syndrome target a dominant site in the S2 domain of the surface glycoprotein. J Virol 79(6):3401–3408PubMedCrossRefGoogle Scholar
  17. 17.
    Trinchieri A, Braceschi L, Tiranti D, et al (1990) Secretory immunoglobulin A and inhibitory activity of bacterial adherence to epithelial cells in urine from patients with urinary tract infections. Urol Res 18(5):305–308PubMedCrossRefGoogle Scholar
  18. 18.
    Kantele A, Mottonen T, Ala-Kaila K et al (2003) P fimbria-specific B cell responses in patients with urinary tract infection. J Infect Dis 188(12):1885–1891PubMedCrossRefGoogle Scholar
  19. 19.
    Lepper PM, Moricke A, Held TK, et al (2003) K-antigen-specific, but not O-antigen-specific natural human serium antibodies promote phagocytosis of Klebsiella pneumoniae. FEMS Immunol Med Microbiol 35(2):93–98PubMedCrossRefGoogle Scholar
  20. 20.
    Deo SS, Vaidva AK (2004) Elevated levels of secretory immunoglobulin a (sIgA) in urinary tract infections. Indian J Pediatr 71(1):37–40PubMedCrossRefGoogle Scholar
  21. 21.
    Mueller-Ortiz SL, Drouin SM, Wetsel RA (2004) The alternative activation pathway and complement component CS are critical for a protective immune reponse against Pseudomonas aeruginosa in a murine model of pneumonia. Infect Immun 72(5):2899–2906PubMedCrossRefGoogle Scholar
  22. 22.
    Harvey BS, Baker CJ, Edwards MS (1992) Contributions of complement and immunoglobulin to neutrophil=mediated killing of enterococci. Infect Immun 60(9):3635–3640PubMedGoogle Scholar
  23. 23.
    Brinkhof MWG, Spoerr A, Birrer A et al (2006) Influenza-attributable mortality among the elderly in Switzerland. Swiss Med Wkly 136:302–309PubMedGoogle Scholar
  24. 24.
    Van Der Sluijs KF, van Elden LJ, Nijhuis M, et al. (2004) IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection. J Immunol 172(12):7603–7609PubMedGoogle Scholar
  25. 25.
    Seki M, Yanagihara K, Higashiyama Y, et al (2004) Immunokinetics in severe pneumonia due to influenza virus and bacteria coinfection in mice. Eur Respir J 24(1):143–149PubMedCrossRefGoogle Scholar
  26. 26.
    Thompson WW, Shay DK, Weintraub E et al (2003) Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289(2):179–186PubMedCrossRefGoogle Scholar
  27. 27.
  28. 28.
    McIntosh EDG, Conway P, Willingham J, et al (2005) Pneumococcal pneumonia in the UK—how herd immunity affects the cost-effectiveness of 7-valent penumococcal conjugate vaccine (PCV). Vaccine 23:1739–1745PubMedCrossRefGoogle Scholar
  29. 29.
    Goodeve A, Potter CW, Clark A, et al (1983) A graded-dose study of inactivated, surface antigen influenza B vaccine in volunteers: reactogenicity, antibody response and protection to challenge virus infection. J Hyg (Lond) 90(1):107–115Google Scholar
  30. 30.
    Keren G, Segev S, Morag A, et al (1988) Failure of influenza vaccination in the aged. J Med Virol 25(1):85–89PubMedCrossRefGoogle Scholar
  31. 31.
    Beyer WE, Palache AM, Baljet M, et al (1989) Antibody induction by influenza vaccines in the elderly: a review of the literature. Vaccine 7(5):385–394PubMedCrossRefGoogle Scholar
  32. 32.
    Jayasekera JP, Vinuesa CG, Karupiah G et al (2006) Enhanced anti-viral antibody secretion and attenuated immunopathology during influenza virus infection in nitric oxide synthase- 2-deficient mice. J Gen Virol 87(11):3361–3371PubMedCrossRefGoogle Scholar
  33. 33.
    AlonsodeVelasco E, Verheul AFM, Verhoef J, et al (1995) Streptococcus pneumoniae: virulence factors, pathogenesis, and vaccines. Microbiol Rev 59(4):591–603PubMedGoogle Scholar
  34. 34.
    Hageman JC, Uyeki TM, Francis JS, et al (2006) Severe community-acquired pneumonia due to Staphylococcus aureus, 2003-04 influenza season. Emerg Infect Dis 12(6):894–899PubMedGoogle Scholar
  35. 35.
    Birch C, Gowardman J (2000) Streptococcus pyogenes: a forgotten cause of severe community- acquired pneumonia. Anaesth Intensive Care 28(1):87–90PubMedGoogle Scholar
  36. 36.
    Banerjee M, Sanderson JD, Spencer J et al (2000) Immunohistochemical analysis of ageing human B and T cell populations reveals an age-related decline of CDb T cells in spleen but not gut-associated lymphoid tissue (GALT). Mech Ageing Dis 115(1–2):85–99CrossRefGoogle Scholar
  37. 37.
    Kruetzmann S, Rosado MM, Weber H et al (2003) Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J Exp Med 197(7):939–945PubMedCrossRefGoogle Scholar
  38. 38.
    Liu B, Kimura Y (2007) Local immune response to respiratory syncytial virus infection is diminished in senescence-accelerated mice. J Gen Virol 88(9):2552–2558PubMedCrossRefGoogle Scholar
  39. 39.
    Bernstein ED, Gardner EM, Abrutyn E et al (1998) Cytokine production after influenza vaccination in a healthy elderly population. Vaccine 16(18):1722–1731PubMedCrossRefGoogle Scholar
  40. 40.
    Gardner EM, Bernstein ED, Dran S et al () Characterization of antibody responses to annual influenza vaccination over four years in a healthy elderly population. Vaccine 19:4610–4617Google Scholar
  41. 41.
    Murasko DM, Bernstein ED, Gardner EM et al (2002) Role of humoral and cell-mediated immunity in protection from influenza disease after immunization of healthy elderly. Exp Gerontol 37:427–439PubMedCrossRefGoogle Scholar
  42. 42.
    Keitel WA, Atmar RL, Cate TR et al (2006) Safety of high doses of influenza vaccine and effect on antibody responses in elderly persons. Arch Intern Med 166(10):1121–1127PubMedCrossRefGoogle Scholar
  43. 43.
    Maciosek MV, Solberg LI, Coffield AB, et al (2006) Influenza vaccination health impact and cost effectiveness among adults aged 50 to 64 and 65 and older. Am J Prev Med 31(1):72–79PubMedCrossRefGoogle Scholar
  44. 44.
    Odelin MF, Momplot C, Bourlet T, et al (2003) Temporal surveillance of the humoral immunity against influenza vaccine in the elderly over 9 consecutive years. Gerontology 49(4):233–239PubMedCrossRefGoogle Scholar
  45. 45.
    Simonsen L, Reichart TA, Viboud C, et al (2005) Impact of influenza vaccination on seasonal mortality in the US elderly population. Arch Intern Med 165(3):265–272PubMedCrossRefGoogle Scholar
  46. 46.
    Rizzo C, Viboud C, Montomoli E et al (2006) Influenza-related mortality in the Italian elderly: No decline associated with increasing vaccination coverage. Vaccine. 24:6468–6475PubMedCrossRefGoogle Scholar
  47. 47.
    Cook JM, Gualde N, Hessel L, et al (1987) Alterations in the human immune response to the hepatitis B vaccine among the elderly. Cell Immunol 109(1):89–96PubMedCrossRefGoogle Scholar
  48. 48.
    Hainz U, Jenewein B, Asch E et al (2005) Insufficient protection for healthy elderly adults by tetanus and TBE vaccines. Vaccine 23:3232–3235PubMedCrossRefGoogle Scholar
  49. 49.
    Genton B, D’Acremont V, Furrer HJ, et al (2006) Hepatitis A vaccines and the elderly. Travel Med Infect Dis 4(6):303–312PubMedCrossRefGoogle Scholar
  50. 50.
    Monath TP, Cetron MS, McCarthy K, et al (2005) Yellow fever 17D vaccine safety and immunogenicity in the elderly. Hum Vaccine 1(5):207–214Google Scholar
  51. 51.
    Huang YP, Gauthey L, Michel M, et al (1992) The relationship between influenza vaccine- induced specific antibody responses and vaccine-induced non-specific autoantibody responses in healthy older women. J Gerontol 47:50–55Google Scholar
  52. 52.
    Kolibab K, Smithson SL, Rabquer B et al (2005) Immune response to pneumococcal polysaccharides 4 and 14 in elderly and young adults:analysis of the variable heavy chain repertoire. Inf Imm 73(11):7465–7476CrossRefGoogle Scholar
  53. 53.
    Rubins JB, Janoff EN (2001) Pneumococcal disease in the elderly: what is preventing vaccine efficacy? Drugs Aging 18(5):305–311PubMedCrossRefGoogle Scholar
  54. 54.
    Ortqvist A, Hedlund J, Burman LA et al (1998) Randomised trial of 23-valent pneumococcal capsular polysaccharide vaccine in prevention of pneumonia in middle-aged and elderly people. Swedish Pneumococcal Vaccination Study Group. Lancet 351(9100):399–403PubMedCrossRefGoogle Scholar
  55. 55.
    Ortqvist A, Henckaerts I, Hedlund J, Poolman J (2007) Non-response to specific serotypes likely cause for failure to 23-valent pneumococcal polysaccharide vaccine in the elderly. Vaccine 25(13):2445–2450PubMedCrossRefGoogle Scholar
  56. 56.
    Koivula I, Stén M, Leinonen M, Mäkelä PH (1997) Clinical efficacy of pneumococcal vaccine in the elderly: a randomized, single-blind population-based trial. Am J Med 103(4):281–290PubMedCrossRefGoogle Scholar
  57. 57.
    Simberkoff MS, Cross AP, Al-Ibrahim M, et al (1986) Efficacy of pneumococcal vaccine in high-risk patients. Results of a Veterans Administration Cooperative Study. N Engl J Med 315(21):1318–1327PubMedCrossRefGoogle Scholar
  58. 58.
    Xavier RM, Yamauchi Y, Nakamura M et al (1995) Antinuclear antibodies in healthy aging people: a prospective study. MAD 78:145–154CrossRefGoogle Scholar
  59. 59.
    Nilsson B-O, Skogh T, Ernerudh J et al (2006) Antinuclear antibodies in the oldest-old women and men. J AutoImm 27:281–288CrossRefGoogle Scholar
  60. 60.
    Hurme M, Korkki S, Lehtimaki T, et al (2007) Autoimmunity and longevity: presence of antinuclear antibodies is not associated with the rate of inflammation or mortality in nonagenarians. Mech Ageing Dev 128(5–6):407–408PubMedCrossRefGoogle Scholar
  61. 61.
    Torchilin VP, Iakoubov LZ, Estrov Z (2001) Antinuclear autoantibodies as potential antineoplastic agents. Trends Immunol 22(8):424–427PubMedCrossRefGoogle Scholar
  62. 62.
    Ioannidis JP, Katsifis GE, Stavropoulos ED et al (2003) Evaluation of the association of autoantibodies with mortality in the very elderly: a cohort study. Rheumatology (Oxford) 42(2):357–361CrossRefGoogle Scholar
  63. 63.
    Manoussakis MN, Tzioufas AG, Silis MP, et al () High prevalence of anti-cardiolipin and other autoantibodies in a healthy elderly population. Clin Exp Immunol 69(3):557–565Google Scholar
  64. 64.
    Njemini R, Meyers I, Demanet C, et al (2002) The prevalence of autoantibodies in an elderly sub-Saharan African population. Clin Exp Immunol 127(1):99–106PubMedCrossRefGoogle Scholar
  65. 65.
    Andersen-Ranberg K, Hoier-Madsen M, Wiik A et al (2004) High prevalence of autoantibodies among Danish centenarians. Clin Exp Immunol 138:158–163PubMedCrossRefGoogle Scholar
  66. 66.
    Doran MF, Pond GR, Crowson CS et al (2002) Trends in incidence and mortality in rheumatoid arthritis in Rochester, Minnesota, over a forty-year period. Arthritis Rheum 46(3):625–631PubMedCrossRefGoogle Scholar
  67. 67.
    Michou L, Teixeria VH, Pierlot C et al (2007) Associations between genetic factors, tobacco smoking and autoantibodies in familial and sporadic rheumatoid arthritis. Ann Rheum Dis (in press)Google Scholar
  68. 68.
    Edwards JCW, Szczepanski L, Szechinski J et al (2004) Efficacy of B-cell targeted therapy with Rituximab in patients with Rheumatoid Arthritis. N Engl J Med 350(25):2572–2581PubMedCrossRefGoogle Scholar
  69. 69.
    Bugatti S, Codullo V, Caporali R et al (2007) B cells in rheumatoid arthritis. Arthritis Rheum 6:482–487Google Scholar
  70. 70.
    Mauri C, Gray D, Mushtaq N, et al (2003) Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 197(4):489–501PubMedCrossRefGoogle Scholar
  71. 71.
    Evans JG, Chavez-Rueda KA, Eddaoudi A et al (2007) Novel suppressive function of transitional 2 B cells in experimental arthritis. J Immunol 178(12):7868–7878PubMedGoogle Scholar
  72. 72.
    Huppert FA, Solomou W, O’Connor S, et al (1998) Aging and lymphocyte subpopulations: whole-blood analysis of immune markers in a large population sample of healthy elderly individuals. Exp Gerontol 33(6):593–600PubMedCrossRefGoogle Scholar
  73. 73.
    Ginaldi L, De Martinis M, D’Ostilio A, et al (2001) Changes in the expression of surface receptors on lymphocyte subsets in the elderly: quantitative flow cytometric analysis. Am J Hematol 67(2):63–72PubMedCrossRefGoogle Scholar
  74. 74.
    Colonna-Romano G, Bulati M, Aquino A et al (2003) B cells in the aged: CD27, CD5, and CD40 expression. Mech Aging Dis 124:389–393CrossRefGoogle Scholar
  75. 75.
    Chong Y, Ikematsu H, Yamaji K et al (2005) CD27+ (memory) B cell decrease and apoptosis- resistant CD271485; (naïve) B cell increase in aged humans: implications for agerelated peripheral B cell developmental disturbances. Int Immunol 17(4):383–390PubMedCrossRefGoogle Scholar
  76. 76.
    Huppert FA, Pinto EM, Morgan K et al (2003) Survival in a population sample if predicted by proportions of lymphocyte subsets. Mech Aging Dev 124:449–451PubMedCrossRefGoogle Scholar
  77. 77.
    Ferguson FG, Wikby A, Maxson P et al (1995) Immune parameters in a longitudinal study of a very old population of Swedish people: a comparison between survivors and nonsurvivors. J Gerontol A Biol Sci Med Sci 50(6):B378–B382PubMedGoogle Scholar
  78. 78.
    Lazuardi L, Jenewein B, Wolf AM et al (2005) Age-related loss of naïve T cells and dysregulation of T-cell/B-cell interactions in human lymph nodes. Immunol 14(1):37–43CrossRefGoogle Scholar
  79. 79.
    Potter KN, Orchard J, Critchley E et al (2003) Features of the overexpressed V1-69 genes in the unmutated subset of chronic lymphocytic leukaemia are distinct from those in the healthy elderly repertoire. Blood 101:3082–3084PubMedCrossRefGoogle Scholar
  80. 80.
    Veneri D, Franchini M, Vella A et al (2007) Changes of human B and B-1a peripheral blood lymphocytes with age. Heamatol 12(4):337–341CrossRefGoogle Scholar
  81. 81.
    Butterworth M, McClellan B, Allansmith M (1967) Influence of sex in immunoglobulin levels. Nature 214(5094):1224–1225PubMedCrossRefGoogle Scholar
  82. 82.
    Buckley CE, Dorsey FC (1970) The effect of aging on human serum immunoglobulin concentrations. J Immunol 105(4):964–972PubMedGoogle Scholar
  83. 83.
    Hurme M, Paavilainen PM, Pertovaara M et al (2005) IgA levels are predictors of mortality in Finnish nonagenarians. Mech Aging Dis 126:829–831CrossRefGoogle Scholar
  84. 84.
    Listi FLOR, Candore GIUS, Modica MA et al (2006) A study of serum immunoglobulin levels in elderly persons that provides new insights into B cell immunosenescence. Ann N Y Acad Sci 1089(1):487–495PubMedCrossRefGoogle Scholar
  85. 85.
    Jacob J, Kelsoe G, Rajewsky K et al (1991) Intraclonal generation of antibody mutants in germinal centres. Nature 354(6352):389–392PubMedCrossRefGoogle Scholar
  86. 86.
    MacLennan IC (1994) Germinal centers. Annu Rev Immunol 12:117–139PubMedCrossRefGoogle Scholar
  87. 87.
    Han S, Zheng B, Takahashi Y et al (1997) Distinctive characteristics of germinal center B cells. Sem Immunol 9:255–260CrossRefGoogle Scholar
  88. 88.
    Park C–S, Choi YS (2005) How do follicular dendritic cells interact intimately with B cells in the germinal centre? Immunol 114(1):2–10CrossRefGoogle Scholar
  89. 89.
    Tew JG, Wu J, Qin D et al (1997) Follicular dendritic cells and presentation and antigen and costimulatory signals to B cells. Immunol rev 156(1):39–52PubMedCrossRefGoogle Scholar
  90. 90.
    Qin D, Wu J, Vora KH et al () Fc1543;RIIB on follicular dendritic cells regulates the B cell recall response. J Immunol 164(12):6268–6275Google Scholar
  91. 91.
    Choe J, Kim HS, Zhang X et al (1996) Cellular and molecular factors that regulate the differentiation and apoptosis of germinal center B cells. Anti–Ig down-regulates Fas expression of CD40 ligand-stimulated germinal center B cells and inhibits Fas-mediated apoptosis. J Immunol 157(3):1006–1016PubMedGoogle Scholar
  92. 92.
    Li L, Zhang X, Kovacic S et al (2000) Identification of a human follicular dendritic cell molecule that stimulates germinal center B cell growth. J Exp Med 191(6):1077–1084PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang X, Li L, Jung J et al (2001) The distinct roles of T cell-derived cytokines and a novel follicular dendritic cell-signaling molecule 8D6 in germinal center-B cell differentiation. J Immunol 167(1):49–56PubMedGoogle Scholar
  94. 94.
    Marinova E, Hans S, Zheng B (2007) Germinal center helper T cells are dual functional regulatory cells with suppressive activity to conventional CD4+ T cells. J Immunol 178(8):5010–5017PubMedGoogle Scholar
  95. 95.
    Goronzy JJ, Fujii H, Weyand CM (2006) Telomeres, immune aging and autoimmunity. Exp Gerontol 41:246–251PubMedCrossRefGoogle Scholar
  96. 96.
    Son NH, Murray S, Yanovski J et al (2000) Lineage-specific telomere shortening and unaltered capacity for telomerase expression in human T and B lymphocytes with age. J Immunol 165:1191–1196PubMedGoogle Scholar
  97. 97.
    Martens UM, Brass V, Sedlacek L et al (2002) Telomere maintenance in human B lymphocytes. Br J Haematol 119(3):810–818PubMedCrossRefGoogle Scholar
  98. 98.
    Norrback KF, Hultdin M, Dahlenborg K et al (2001) Telomerase regulation and telomere dynamics in germinal centers. Eur J Haematol 67(5–6):309–317PubMedCrossRefGoogle Scholar
  99. 99.
    Kolar GR, Mehta D, Wilson PC et al (2006) Diversity of the Ig repertoire is maintained with age in spite of reduced germinal centre cells in human tonsil lymphoid tissue. Scand J Immunol 64(3):314–324PubMedCrossRefGoogle Scholar
  100. 100.
    Gonzalez-Fernandez A, Gilmore D, Milstein C (1994) Age-related decrease in the proportion of germinal center B cells from mouse Peyer’s patches is accompanied by an accumulation of somatic mutations in their immunoglobulin genes. Eur J Immunol 24(11):2918–2921PubMedCrossRefGoogle Scholar
  101. 101.
    Aydar Y, Balogh P, Tew JG et al (2004) Follicular dendritic cells in aging, a “bottle-neck” in the humoral immune response. Ageing Res Rev 3(1):15–29PubMedCrossRefGoogle Scholar
  102. 102.
    Mattila PS, Tarkkanen J (1997) Age-associated changes in the cellular composition of the human adenoid. Scand J Immunol 45(4):423–427PubMedCrossRefGoogle Scholar
  103. 103.
    Rogozin IB, Kolchanov NA (1992) Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta 1171(1):11–18PubMedGoogle Scholar
  104. 104.
    Spencer J, Dunn M, Dunn-Walters DK (1999) Characteristics of sequences around individual nucleotide substitutions in IgVH genes suggest different GC and AT mutators. J Immunol 162(11):6596–6601PubMedGoogle Scholar
  105. 105.
    Rogozin IB, Diaz M (2004) Cutting edge: DGYW/WRCH is a better predictor of mutability at G:C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine deaminase-triggered process. J Immunol 172(6):3382–3384PubMedGoogle Scholar
  106. 106.
    Wang X, Stollar BD (1999) Immunoglobulin VH gene expression in human aging. Clin Immunol 93(2):132–142PubMedCrossRefGoogle Scholar
  107. 107.
    Van Dijk-Hard I, Soderstrom I, Feld S et al (1997) Age-related impaired affinity maturation and differential D-JH gene usage in human VH6-expressing B lymphocytes from healthy individuals. Eur J Immunol 27(6):1381–1386PubMedCrossRefGoogle Scholar
  108. 108.
    Boursier L, Dunn-Walters DK, Spencer J (1999) Characteristics of IgVH genes used by human intestinal plasma cells from childhood. Immunol 97(4):558–564CrossRefGoogle Scholar
  109. 109.
    Troutaud D, Drouet M, Decourt C et al (1999) Age-related alterations of somatic hypermutation and CDR3 lengths in human Vkappa4-expressing B lymphocytes. Immunol 97(2):197–203CrossRefGoogle Scholar
  110. 110.
    Rosner K, Winter DB, Kasmer C et al (2001) Impact of age on hypermutation of immunoglobulin variable genes in humans. J Clin Immunol 21(2):102–115PubMedCrossRefGoogle Scholar
  111. 111.
    Chong Y, Ikematsu H, Yamaji K et al (2003) Age-related accumulation of Ig VH gene somatic mutations in peripheral B cells from aged humans. Clin Exp Immunol 133(1):59–66PubMedCrossRefGoogle Scholar
  112. 112.
    Dunn-Walters DK, Boursier L, Spencer J. Hypermutation, diversity and dissemination of human intestinal lamina propria plasma cells. Eur J Immunol 1997;27(11):2959–2964PubMedCrossRefGoogle Scholar
  113. 113.
    Dunn-Walters D, Hackett M, Boursier L et al (2000) Charcteristics of human IgA and IgM genes used by plasma cells in the salivary gland resemble those used in duodenum but not those used in the spleen. J Immunol 164:1595–1601PubMedGoogle Scholar
  114. 114.
    Banerjee M, Mehr R, Belelovsky A et al (2002) Age- and tissue-specific differences in human germinal center B cell selection revealed by analysis of IgVH gene hypermutation and lineage trees. Eur J Immunol 32:1947–1957PubMedCrossRefGoogle Scholar
  115. 115.
    Dunn-Walters DK, Banerjee M & Mehr R (2003) Effects of age on antibody affinity maturation. Biochem Soc Trans 31(2):447–448PubMedCrossRefGoogle Scholar
  116. 116.
    Eaton SM, Burns EM, Kusser K et al (2004) Age-related defects in CD4 T cell cognate helper function lead to reduction in humoral responses. J Exp Med 200(12):1613–1622PubMedCrossRefGoogle Scholar
  117. 117.
    Szakal AK, Kosco MH, Tew JG (1988a) A novel in vivo follicular dendritic cell-dependent iccosome-mediated mechanism for delivery of antigen to antigen-processing cells. J Immunol 140(2):341–353Google Scholar
  118. 118.
    Szakal AK, Taylor JK, Smith JP et al (1988b) Morphometry and kinetics antigen transport and developing antigen retaining reticulum of follicular dendritic cells in lymph nodes of aging immune mice. Aging: Immunol Infect Dis 1:7–22Google Scholar
  119. 119.
    Yoshida K, Van Den Berg TK, Dijkstra CD (1993) Two functionally different follicular dendritic cells in secondary lymphoid follicles of mouse spleen, as revealed by CR/2 and Fc1543;RII-mediated immune-complex trapping. Immunol 80:34–39Google Scholar
  120. 120.
    Aydar Y, Balogh P, Tew JG et al (2003) Altered regulation of FcgRII on aged follicular dendritic cells correlates with immunoreceptor typrosine-based inhibition motif signaling in B cells and reduced germinal center formation. J Immunol 171(11):5975–5987PubMedGoogle Scholar
  121. 121.
    Frasca D, Riley RL & Blomberg BB (2005) Humoral immune response and B-cell functions including immunoglobulin class switch are downregulated in aged mice and humans. Sem Immunol 17(5):378–384CrossRefGoogle Scholar
  122. 122.
    Frasca D, Riley RL, Blomber BB (2007) Aging murine B cells have secreased class switch induced by anti-CD40 or BAFF. Exp Gerontol 42(3):192–203PubMedCrossRefGoogle Scholar
  123. 123.
    Williams GT, Jolly CJ, Kohler J et al (2000) The contribution of somatic hypermutation to the diversity of serum immunoglobulin: dramatic increase with age. Immunity 13(3):409–417PubMedCrossRefGoogle Scholar
  124. 124.
    Colonna-Romano G, Aquino A, Bulati M et al (2006) Memory B cell subpopulations in the aged. Rejuv Res 9(1):149–152CrossRefGoogle Scholar
  125. 125.
    Macallan DC, Wallace DL, Zhang Y et al (2005) B-cell kinetics in humans: rapid turnover of peripheral blood memory cells. Blood 105(9):3633–3640PubMedCrossRefGoogle Scholar
  126. 126.
    Savage WJ, Bleesing JJ, Douek D et al (2001) Lymphocyte reconstitution following nonmyeloblative hematopoietic stem cell transplantation follows two patterns depending on age and donor/recipient chimerism. Bone Marrow Transplant 28(5):463–471PubMedCrossRefGoogle Scholar
  127. 127.
    Johnson SA, Cambier JC (2004) Ageing, autoimmunity and arthritis: senescence of the B cell compartment – implications for humoral immunity. Arthritis Res Ther 6(4):131–139PubMedCrossRefGoogle Scholar
  128. 128.
    Breitbart E, Wang X, Leka LS et al (2002) Altered memory B-cell homeostasis in human aging. J Gerontol A Biol Sci Med Sci 57(8):B304–B311PubMedGoogle Scholar
  129. 129.
    Smithson SL, Kolibab K, Shriner AK et al (2005) Immune response to pneumococcal polysaccharides 4 and 14 in elderly and young adults: analysis of the variable light chain repertoire. Infect Immun 73(11):7477–7484PubMedCrossRefGoogle Scholar
  130. 130.
    Bakkus MH (1999) Ig gene sequences in the study of clonality. Pathol Biol (Paris) 47(2):128–147Google Scholar
  131. 131.
    Xue W, Luo S, Adler WH et al (1997) Immunoglobulin heavy chain junctional diversity in young and aged humans. Human Immunol 57:80–92CrossRefGoogle Scholar
  132. 132.
    Pannetier C, Cochet M, Darche S et al (1993) The sizes of the CDR3 hypervariable regions of the murine T-cell receptor beta chains vary as a function of the recombined germ-line segments. Proc Natl Acad Sci 90(9):4319–4323PubMedCrossRefGoogle Scholar
  133. 133.
    Gorski J, Yassai M, Zhu X et al (1994) Circulating T cell repertoire complexity in normal individuals and bone marrow recipients analyzed by CDR3 size spectratyping. J Immunol 152:5109–5119PubMedGoogle Scholar
  134. 134.
    Liu D, Callahan JP, Dau PC (1995) Interfamily fragment analysis of the T cell receptor beta chain CDR3 region. J Immunol Methods 187(1):139–150PubMedCrossRefGoogle Scholar
  135. 135.
    Wikby A, Johansson B, Olsson J et al (2002) Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol 37:445–453PubMedCrossRefGoogle Scholar
  136. 136.
    Ghia P, Prato G, Scielzo C et al (2004) Monoclonal CD5+ and CD51485; B-lymphocyte expansions are frequent in the peripheral blood of the elderly. Blood 103:2337–2342PubMedCrossRefGoogle Scholar
  137. 137.
    Kyle RA, Therneau TM, Rajkumar SV et al (2006) Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 354:1362–1369PubMedCrossRefGoogle Scholar
  138. 138.
    Ligthart GJ, Radl J, Corberand JX et al (1990) Monoclonal gammopathies in human aging: increased occurrence with age and correlation with health status. MAD 52(2–3):235–243CrossRefGoogle Scholar
  139. 139.
    Radl J (1990) Age-related monoclonal gammopathies: clinical lessons from the aging C57BL mouse. Immunol Today 11(7):234–236PubMedCrossRefGoogle Scholar
  140. 140.
    Kyle RA, Therneau TM, Rajkumar SV et al (2002) A long-term study of prognosis in monoclonal gammopathy of undetermined significance. NEJ Med 346(8):564–569CrossRefGoogle Scholar
  141. 141.
    Kyle RA, Rajkumar SV (2003) Monoclonal gammopathies of undetermined significance: a review. Imm rev 194:112–139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Kate L. Gibson
    • 1
    • 2
  • Deborah K. Dunn-Walters
    • 1
    • 2
  1. 1.Department of ImmunobiologyKing’s and St. Thomas School of Medicine King’s CollegeLondon
  2. 2.Guy’s HospitalLondonUK

Personalised recommendations