Solvation in Supercritical Fluids

  • Ana C. Furlan
  • Frank W. FÁvero
  • Javier Rodriguez
  • Daniel Laria
  • Munir S. Skaf
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 6)


Supercritical fluids (SCFs) comprise an important class of solvents and reaction media which have found many applications in basic and applied chemical sciences. SCFs, especially supercritical carbon dioxide, play a key role as one of the most important environmentally benign solvents in the so-called “green” chemistry applications. In the context of practical applications, SCFs are becoming increasingly viable in economic terms as an alternative to conventional organic solvents for purification, fractionation, and extraction of valuable organic compounds from a wide range of natural matrices1 [1,2,3,4]. Academic and commercial extraction units are available for selective extraction of organic substances based on supercritical carbon dioxide (SC-CO2). Two of the most successful and profitable large-scale SCF-based extraction processes are the extraction of caffeine from coffee beans and tea leaves and nicotine from tobacco. In the case of coffee beans, at the end of the...


Supercritical Fluid Solvation Shell Supercritical Water Supercritical Condition Excess Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Noyori R (1999) Chem Rev 99(2): Special Issue (for recent accounts on chemical applications and fundamental aspects of supercritical fluids)Google Scholar
  2. 2.
    Erkey C, Kiran E (2006) J Supercrit Fluids 38(2): Special Issue (for reviews on the many applications of supercritical fluids in chemistry and chemical engineering)Google Scholar
  3. 3.
    Hutchinson KW, Foster NR (eds) (1995) Innovations in supercritical fluids science and technology, ACS Symposium Series 608, American Chemical Society, Washington (for recent advances in technological processes involving supercritical fluids)Google Scholar
  4. 4.
    Eckert CA, Knutson BL, Debenedetti PG (1996) Nature 383:313Google Scholar
  5. 5.
    Nodari RO, Guerra MP (1999) Biodiversidade: aspectos biológicos, geográficos, legais e éticos. In: J. Simões et al. (eds) Farmacognosia: da planta ao medicamento (in Portuguese), Universidade UFRGS, Porto Alegre, BrazilGoogle Scholar
  6. 6.
    Rosa PTV, Meireles MAA (2005) J Food Eng 67:235CrossRefGoogle Scholar
  7. 7.
    Savage PE, Gopalan S, Mizan TI, Martino CJ, Brock EE (1995) AICHE J 41:1723CrossRefGoogle Scholar
  8. 8.
    Cooper AI (2000) J Mater Chem 10:207CrossRefGoogle Scholar
  9. 9.
    Yeo SD, Kiran E (2005) J Supercrit Fluids 34:287CrossRefGoogle Scholar
  10. 10.
    Jung J, Perrut M (2001) J Supercrit Fluids 20:179CrossRefGoogle Scholar
  11. 11.
    Hakuta Y, Hayashi H, Arai K (2003) Curr Opt Solid State Mat Sci 7:341CrossRefGoogle Scholar
  12. 12.
    Klibanov AM (2001) Nature 409:241CrossRefGoogle Scholar
  13. 13.
    Kamat SV, Beckman EJ, Russel AJ (1995) Crit Rev Biotech 15:41CrossRefGoogle Scholar
  14. 14.
    Weingartner H and Franck EU (2005) Angew Chem Int Ed 44:2672CrossRefGoogle Scholar
  15. 15.
    Eckert CA, Liotta CL, Bush D, Brown JS, Hallett JP (2004) J Phys Chem B 108:18108CrossRefGoogle Scholar
  16. 16.
    Tucker SC, Maddox MW (1998) J Phys Chem B 102:2437CrossRefGoogle Scholar
  17. 17.
    Stephens MD, Saven JG, Skinner JL (1997) J Chem Phys 106:2129CrossRefGoogle Scholar
  18. 18.
    Elles CG, Crim FF (2006) Annu Rev Phys Chem 57:273CrossRefGoogle Scholar
  19. 19.
    Marcus Y (2005) J Phys Org Chem 18:373CrossRefGoogle Scholar
  20. 20.
    Patel N, Biswas R, Maroncelli M (2002) J Phys Chem B 106:7096CrossRefGoogle Scholar
  21. 21.
    Song W, Biswas R, Maroncelli M (2000) J Phys Chem A 104:6924CrossRefGoogle Scholar
  22. 22.
    Rocha SRP, Johnston KP, Westacott RE, Rossky PJ (2001) J Phys Chem B 105:12092CrossRefGoogle Scholar
  23. 23.
    Rocha SRP, Johnston KP, Rossky PJ (2002) J Phys Chem B 106:13250CrossRefGoogle Scholar
  24. 24.
    Fávero FW, Skaf MS (2005) J Supercrit Fluids 34:237CrossRefGoogle Scholar
  25. 25.
    Fávero FW (2007) PhD Thesis, Institute of Chemistry, State University of CampinasGoogle Scholar
  26. 26.
    Skaf MS, Laria D (2000) J Chem Phys 113:3499CrossRefGoogle Scholar
  27. 27.
    Laria D, Skaf MS (2002) J Phys Chem A 106:8066CrossRefGoogle Scholar
  28. 28.
    Rodriguez J, Skaf MS, Laria D (2003) J Chem Phys 119:6044CrossRefGoogle Scholar
  29. 29.
    Muldoon MJ, Aki SNVK, Anderson JL, Dixon JK, Brennecke JF (2007) J Phys Chem B 111:9001CrossRefGoogle Scholar
  30. 30.
    Keskin S, Kayrak-Talay D, Akman U, Hortacsu O (2007) J Supercrit Fluids 43:150CrossRefGoogle Scholar
  31. 31.
    Anderton RM, Kauffman JF (1995) J Phys Chem 99:13759CrossRefGoogle Scholar
  32. 32.
    Song W, Maroncelli M (2003) Chem Phys Lett 378:410CrossRefGoogle Scholar
  33. 33.
    Li HP, Arzhantsev S, Maroncelli M (2007) J Phys Chem B 111:3208CrossRefGoogle Scholar
  34. 34.
    James J (1991) Caffeine and health, Academic Press, San Diego, CAGoogle Scholar
  35. 35.
    Saldaña MDA, Mohamed RS, Baer MG, Mazzafera P (1999) J Agric Food Chem 47:3804CrossRefGoogle Scholar
  36. 36.
    Mohamed RS, Saldaña MDA, Mazzafera P, Zetzl C, Brunner G (2002) Ind Eng Chem Res 41:6751CrossRefGoogle Scholar
  37. 37.
    Johannsen M, Brunner G (1994) Fluid Phase Equilib 95:215CrossRefGoogle Scholar
  38. 38.
    Li S, Varadarajan GS, Stanley H (1991) Fluid Phase Equilib 68:263CrossRefGoogle Scholar
  39. 39.
    Harris JG, Yung KH (1995) J Phys Chem 99:12021CrossRefGoogle Scholar
  40. 40.
    Frisch MJ et al. (1998) Gaussian 98, Revision A. 7, Gaussian, Inc., Pittsburgh, PAGoogle Scholar
  41. 41.
    Kaminski GA, Friesner RA, Tirado-Rives J, Jörgensen WL (2001) J Phys Chem B 105:6474CrossRefGoogle Scholar
  42. 42.
    Beckman EJ (2004) Chem Commun 17:1885CrossRefGoogle Scholar
  43. 43.
    Sarbu T, Styranec T, Beckman EJ (2000) Nature 405:165CrossRefGoogle Scholar
  44. 44.
    Okada K, Yao M, Hiejima Y, Kohno H, Kajihara Y (1997) J Chem Phys 107:9302CrossRefGoogle Scholar
  45. 45.
    Okada K, Yao M, Hiejima Y, Kohno H, Kajihara Y (1999) J Chem Phys 110:3026CrossRefGoogle Scholar
  46. 46.
    Bursulaya BD, Kim HJ (1999) J Chem Phys 110:9656CrossRefGoogle Scholar
  47. 47.
    Yoshida K, Matsubayasi N, Nakahara M (2007) J Chem Phys 127:174509CrossRefGoogle Scholar
  48. 48.
    Rossky PJ, Simon JD (1994) Nature 370:263CrossRefGoogle Scholar
  49. 49.
    Turi L, Sheu S-W, Rossky PJ (2005) Science 309:914CrossRefGoogle Scholar
  50. 50.
    Gaathon A, Czapski G, Jortner J (1972) J Chem Phys 58:2648CrossRefGoogle Scholar
  51. 51.
    Jortner J, Gaathon A (1977) Can J Chem 55:1801CrossRefGoogle Scholar
  52. 52.
    Cline JA, Jonah CD, Bartels DM (2000) In The solvated electron in supercritical water: spectra, yields, and reactions, Proceedings of the 1st International Symposium in Supercritical Water-cooled Reactors, Design, and Technology, Tokyo, Nov 6–9Google Scholar
  53. 53.
    Dimitrijevic NM, Takahashi K, Bartels DM, Jonah CD (2001) J Phys Chem A 105:7236CrossRefGoogle Scholar
  54. 54.
    Boero M, Terakura K, Ikeshoji T, Leiw CC, Parrinello M (2001) J Chem Phys 115:2219CrossRefGoogle Scholar
  55. 55.
    Ladanyi BM, Skaf MS (1993) Annu Rev Phys Chem 44:335CrossRefGoogle Scholar
  56. 56.
    Su Z, Maroncelli M (2006) J Chem Phys 124:164506CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ana C. Furlan
    • 1
  • Frank W. FÁvero
    • 1
  • Javier Rodriguez
    • 2
  • Daniel Laria
    • 2
  • Munir S. Skaf
    • 1
  1. 1.Institute of ChemistryState University of Campinas, UNICAMPCampinasBrazil
  2. 2.Department of PhysicsComisión Nacional de Energía Atómica, CNEAArgentina

Personalised recommendations