Hydrogen Bonds And Solvent Effects In Soil Processes: A Theoretical View

  • Daniel TunegaEmail author
  • Adelia J. A. Aquino
  • Georg Haberhauer
  • Martin H. Gerzabek
  • Hans Lischka
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 6)


The importance of hydrogen bonds and solvent effects in soil and environmental chemistry is demonstrated in this chapter. Humic substances as one of the major soil constituents are modeled by means of representative functional groups. Their capability to form hydrogen bonds is demonstrated on interactions with selected sets of polar molecules, anions and acidic pesticides, particularly 2,4-dichlorophenoxyacetic. It was shown that anionic species form complexes of similar strength as corresponding neutral molecules if solvent effects are taken into account. Of all functional groups carboxyl showed the highest chemical activity in the formation of complexes. The calculations demonstrate that the solvent effect substantially lowers the complex formation energies, especially in case of charged systems.

The soil minerals kaolinite and goethite studied in this work possess very active surfaces, which are formed from hydroxyl groups. These OH groups are very flexible and able to act as a proton donor or acceptor for hydrogen bond formation. Polar molecules (e.g., H2O, acetic acid) form strongly bound complexes via multiple hydrogen bonds. It was shown that strong sorbent sites exist on irregular clay mineral surfaces formed on the corner and edges of clay mineral particles


Functional groups Soil minerals Solvent effect Hydrogen bonds DFT 



This work was supported by the Austrian Sciences Fund (project P17967-N11) and by the German Research Foundation, the priority program SPP 1315 (project GE 1676/1-1). We are grateful for the technical support and computer time at the Linux-PC clusters Schrödinger I–III of the computer centre of the University of Vienna.


  1. 1.
    Hamilton WC, Ibers JA (1968) Hydrogen bonding in solids, Benjamin, New YorkGoogle Scholar
  2. 2.
    Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures, Springer-Verlag, BerlinCrossRefGoogle Scholar
  3. 3.
    Jeffrey GA (1997) An introduction to hydrogen bonding, Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Scheiner (1997) Hydrogen bonding. A theoretical perspective, Oxford University Press, OxfordGoogle Scholar
  5. 5.
    Steiner T (2002) Angew Chem Int Ed 41:48CrossRefGoogle Scholar
  6. 6.
    Maréchal Y (2007) The hydrogen bond and the water molecule. The physics and chemistry of water, aqueous and bio media, Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Baldwin B (2006) Peptide solvation and H-bonds, Elsevier Academic, San DiegoGoogle Scholar
  8. 8.
    Ghabbour EA, Davis G (2000) Humic substances – versatile components of plants, soils and water, Royal Society of Chemistry, Cambridge, UKGoogle Scholar
  9. 9.
    Kile DE, Wershaw RL, Chiou CT (1999) Environ Sci Technol 33:2053CrossRefGoogle Scholar
  10. 10.
    Parker A, Rae JE (1998) Environmental interactions of clays, Springer-Verlag, BerlinGoogle Scholar
  11. 11.
    Dixon JB, Schulze DG (2002) Soil mineralogy with environmental applications, Soil Science Society of America, MadisonGoogle Scholar
  12. 12.
    Kahle M, Kleber M, Jahn R (2003) J Plant Nutr Soil Sci 166:737CrossRefGoogle Scholar
  13. 13.
    Rozas I (2007) Phys Chem Chem Phys 9:2782CrossRefGoogle Scholar
  14. 14.
    Hermans J, Berendsen HJC, van Gunsteren WF, Postma JPM (1984) Biopolymers 23:1513Google Scholar
  15. 15.
    Jorgensen WL, Ravimohan C (1985) J Chem Phys 83:3050CrossRefGoogle Scholar
  16. 16.
    van Gunsteren WF, Berendsen HJC (1990) Angewandte Chemie 29:992Google Scholar
  17. 17.
    Kollman P (1993) Chem Rev 93:2395CrossRefGoogle Scholar
  18. 18.
    Orozco M, Luque FJ (2000) Chem Rev 100:4187CrossRefGoogle Scholar
  19. 19.
    Cramer CJ (2002) Essentials of computational chemistry. In: Theories and Models, Wiley, New YorkGoogle Scholar
  20. 20.
    Coutinho K, Canuto S (2000) J Chem Phys 112:9874CrossRefGoogle Scholar
  21. 21.
    Coutinho K, Saavedra N, Serrano A, Canuto S (2001) J Mol Struct (Theochem) 539:171CrossRefGoogle Scholar
  22. 22.
    Sánchez ML, Aguilar MA, Olivares del Valle FJ (1997) J Comput Chem 18:313CrossRefGoogle Scholar
  23. 23.
    Sánchez Mendoza ML, Aguilar MA, Olivares del Valle FJ (1998) J Mol Struct (Theochem) 26:181CrossRefGoogle Scholar
  24. 24.
    Coutinho K, Georg HC, Fonseca TL, Ludwig V, Canuto S (2007) Chem Phys Lett 437:148CrossRefGoogle Scholar
  25. 25.
    Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117CrossRefGoogle Scholar
  26. 26.
    Miertus S, Tomasi J (1982) Chem Phys 65:239CrossRefGoogle Scholar
  27. 27.
    Cossi M, Barone V, Camini R, Tomasi J (1996) Chem Phys Lett 255:327CrossRefGoogle Scholar
  28. 28.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999CrossRefGoogle Scholar
  29. 29.
    Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799Google Scholar
  30. 30.
    Truong TN, Stefanovich EV (1995) J Chem Phys 103:3709CrossRefGoogle Scholar
  31. 31.
    Cramer CJ, Truhlar DG (1991) J Am Chem Soc 113:8305CrossRefGoogle Scholar
  32. 32.
    Cramer CJ, Truhlar DG (1992) Science 256:213CrossRefGoogle Scholar
  33. 33.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165CrossRefGoogle Scholar
  34. 34.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC; Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M; Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y; Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP; Cross JB, Bakken V, Adamo C, Jaramillo J; Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG; Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.02. Gaussian Inc., Pittsburgh, PAGoogle Scholar
  35. 35.
    von Arnim M, Ahlrichs R (1998) J Comp Chem 19:1746CrossRefGoogle Scholar
  36. 36.
    Maseras F, Morokuma K (1995) J Comp Chem 16:1170CrossRefGoogle Scholar
  37. 37.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  38. 38.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  39. 39.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  40. 40.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200CrossRefGoogle Scholar
  41. 41.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503CrossRefGoogle Scholar
  42. 42.
    Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571CrossRefGoogle Scholar
  43. 43.
    Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829CrossRefGoogle Scholar
  44. 44.
    Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2000) J Phys Chem 104:6824CrossRefGoogle Scholar
  45. 45.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  46. 46.
    Kresse G, Furthmüller J (1996) Phys Re B 54:11169CrossRefGoogle Scholar
  47. 47.
    Perdew JP, Zunger A (1981) Phys Rev B 23:548CrossRefGoogle Scholar
  48. 48.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244CrossRefGoogle Scholar
  49. 49.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  50. 50.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  51. 51.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  52. 52.
    Nosé S (1984) J Chem Phys 81:511CrossRefGoogle Scholar
  53. 53.
    Ferrario M, Ryckaert JP (1985) Mol Phys 54:587CrossRefGoogle Scholar
  54. 54.
    Munro IC, Carlo GL, Orr JC, Sund KG, Wilson RM, Kennepohl E, Lynch BS, Jablinske M, Lee NL (1992) J Am College Toxicol 11:559CrossRefGoogle Scholar
  55. 55.
    Donald DB, Gurprasad NP, Quinnett-Abbott L, Cash K (2001) Environ Toxicol Chem 20:279CrossRefGoogle Scholar
  56. 56.
    Buckingham J (1988) Dictionary of organic compounds, 5th edn, Suppl 2. Chapman & Hall, New YorkGoogle Scholar
  57. 57.
    McBride MB (1994) Environmental chemistry of soils, Oxford University Press, New YorkGoogle Scholar
  58. 58.
    Aquino AJA, Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2002) J Phys Chem A 106:1862CrossRefGoogle Scholar
  59. 59.
    Aquino AJA, Tunega D, Harberhauer G, Gerzabek M, Lischka H (2000) Phys Chem Chem Phys 2:2845CrossRefGoogle Scholar
  60. 60.
    Aquino AJA, Tunega D, Harberhauer G, Gerzabek M, Lischka H (2001) Phys Chem Chem Phys 3:1979CrossRefGoogle Scholar
  61. 61.
    Cieplak P, Kollman PA (1988) J Am Chem Soc 110:3734CrossRefGoogle Scholar
  62. 62.
    Mathews DM, Sheets BN (1969) J Chem Soc A – Inorg Phys Theor 15:2203CrossRefGoogle Scholar
  63. 63.
    Chao J, Zwolinski J (1978) J Phys Chem Ref Data 7:363CrossRefGoogle Scholar
  64. 64.
    Frurip DJ, Curtiss LA, Blander M (1980) J Am Chem Soc 102:2610CrossRefGoogle Scholar
  65. 65.
    Winkler A, Behl JB, Hess PJ (1994) Chem Phys 100:2717Google Scholar
  66. 66.
    Colominas C, Teixido J, Cemeli J, Luque FJ, Orozco M (1998) J Phys Chem B 102:2269Google Scholar
  67. 67.
    Dannenberg JJ, Paraskevas LR, Sharma V (2000) J Phys Chem A 104:6617Google Scholar
  68. 68.
    Nakabayashi T, Sato H, Hirata F, Nishi N (2001) J Phys Chem A 105:245CrossRefGoogle Scholar
  69. 69.
    Sneddon SF, Tobias DJ, Brooks CL III (1989) J Mol Biol 209:817CrossRefGoogle Scholar
  70. 70.
    Fujii Y, Yamada H, Mizuta MJ (1988) Phys Chem 92:6768CrossRefGoogle Scholar
  71. 71.
    Aquino AJA, Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2007) Eur J Soil Sci: 58:889CrossRefGoogle Scholar
  72. 72.
    Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2002a) Langmuir 18:139CrossRefGoogle Scholar
  73. 73.
    Tunega D, Benco L, Haberhauer G, Gerzabek MH, Lischka H (2002b) J Phys Chem B 106:11515CrossRefGoogle Scholar
  74. 74.
    Tunega D, Gerzabek MH, Lischka H (2004a) J Phys Chem B 108:5930CrossRefGoogle Scholar
  75. 75.
    Wang J, Kalinichev AG, Kirkpatrick RJ (2006) Geochim Cosmochim Acta 70:562CrossRefGoogle Scholar
  76. 76.
    Cygan RT, Liang J-J, Kalinichev AG (2004) J Phys Chem B 108:1255CrossRefGoogle Scholar
  77. 77.
    Constanzo PM, Giese RF, Lipsicas M (1984) Clays Clay Miner 32:419CrossRefGoogle Scholar
  78. 78.
    Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2004b) Soil Sci 169:44CrossRefGoogle Scholar
  79. 79.
    Clausen L, Fabricius I, Madsen L (2001) J Environ Qual 30:846CrossRefGoogle Scholar
  80. 80.
    Vasudevan D, Cooper EM, van Exem OL (2002) Environ Sci Technol 36:501CrossRefGoogle Scholar
  81. 81.
    Spadotto CA, Hornsby AG (2003) J Environ Qual 32:949CrossRefGoogle Scholar
  82. 82.
    Sposito G (1984) The surface chemistry of soils, Oxford Univ Press, New YorkGoogle Scholar
  83. 83.
    Ward DB, Brady PB (1998) Clays Clay Miner 46:453CrossRefGoogle Scholar
  84. 84.
    Huertas FJ, Chou L, Wollast R (1998) Geochim Cosmochim Acta 62:417CrossRefGoogle Scholar
  85. 85.
    Huertas FJ, Chou L, Wollast R (1999) Geochim Cosmochim Acta 63:3261CrossRefGoogle Scholar
  86. 86.
    Benyahya L, Garnier JM (1999) Environ Sci Technol 33:1398CrossRefGoogle Scholar
  87. 87.
    Aquino AJA, Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2003) J Comput Chem 24:1853CrossRefGoogle Scholar
  88. 88.
    Hayes KF, Roe AL, Brown GEB Jr, Hodgson KO, Leckie JO, Parks GA (1987) Science 238:783CrossRefGoogle Scholar
  89. 89.
    Kanel SR, Neppolian B, Jung HY, Choi H (2004) Environ Eng Sci 21:741CrossRefGoogle Scholar
  90. 90.
    Hazemann JL, Bérar JF, Manceau A (1991) Mater Sci Forum 79:821CrossRefGoogle Scholar
  91. 91.
    Wang J, Kalinichev AG, Kirkpatrick RJ (2006) Geochim Cosmochim Acta 70:562Google Scholar
  92. 92.
    Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Daniel Tunega
    • 1
    Email author
  • Adelia J. A. Aquino
    • 2
  • Georg Haberhauer
    • 3
  • Martin H. Gerzabek
    • 2
  • Hans Lischka
    • 3
  1. 1.Institute for Theoretical ChemistryUniversity of ViennaAustria
  2. 2.Institute of Soil ResearchUniversity of Natural Resources and Applied Life Sciences, ViennaAustria
  3. 3.Austrian Research Centers SeibersdorfAustria

Personalised recommendations