Advertisement

The results of experiments, which measured the damage induced by the impact of low energy electrons (LEE) on DNA under ultra-high vacuum conditions, are reviewed with emphasis on transient anion formation. The experiments are briefly described and several examples are presented from results on the yields of fragments produced as a function of the incident energy (0.1–30 eV) of the electrons. By comparing the results from experiments with different forms of the DNA molecule (i.e., from short single stranded DNA having four bases to plasmids involving ~3,000 base pairs) and theory, it is possible to determine fundamental mechanisms that are involved in the dissociation of basic DNA components, base release and the production of single, double-strand breaks and cross-links. Below 15 eV, electron resonances (i.e., the formation of transient anions) play a dominant role in the fragmentation of any bonds within DNA. These transient anions modify or fragment DNA by decaying into dissociative electronically excited states or by dissociating into a stable anion and a neutral radical. The fragments can initiate further reactions within DNA and thus cause more complex chemical damage. The incident electron wave can first diffract within the molecule before temporary localization on a basic DNA unit, but when transient anion decay by electron emission occurs, the departing electron wave can also be strongly enhanced by constructive interference within the DNA molecule. The experiments with oligonucleotides reported in this article show that the amount of damage generated by 3–15 eV electrons is dependent on base identity, base sequence and electron energy. Capture of a LEE by a DNA subunit may also be followed by electron transfer to another. Such transfers are affected by base stacking and sequence. Furthermore, the damage is strongly dependent on the topology and environment of DNA and the type of counter ion on the phosphate group. In particular, condensing H2O on a DNA induces the formation of a new type of transient anion whose parent is a H2O-DNA complex. Finally, under identical conditions, LEE were found to be three times more effective than X rays to produce strand breaks

Keywords

Electrons DNA Radiation Damage Anion Desorption Dissociative Attachment Strand Breaks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    von Sonntag C (1987) The Chemical Basis for Radiation Biology, Taylor and Francis, London.Google Scholar
  2. 2.
    Ward JF (1977) Advances in Radiation Biology 5, Academic Press, New York.Google Scholar
  3. 3.
    Yamamoto O (1976) Aging, Carcinogenesis and Radiation Biology, Smith K (ed), Plenum, New York.Google Scholar
  4. 4.
    Fuciarelli AF, Zimbrick JD (eds) (1995) Radiation Damage in DNA: Structure/Function Relationships at Early Times, Batelle, Columbus.Google Scholar
  5. 5.
    Sanche L (2005) Eur Phys J D 35:367.CrossRefGoogle Scholar
  6. 6.
    Cai Z, Cloutier P, Hunting D, Sanche L (2005) J Phys Chem B 109:4796.CrossRefGoogle Scholar
  7. 7.
    International Commission on Radiation Units and Measurements (1979) ICRU Report 31, ICRU, Washington.Google Scholar
  8. 8.
    LaVerne JA, Pimblott SM (1995) Radiat Res 141:208.CrossRefGoogle Scholar
  9. 9.
    Cobut V, Frongillo Y, Patau JP, Goulet T, Fraser M-J, Jay-Gerin J-P (1998) Radiat Phys Chem 51:229.CrossRefGoogle Scholar
  10. 10.
    Bartels DM, Cook AR, Mudaliar M, Jonah CD (2000) J Phys Chem A 104:1686.CrossRefGoogle Scholar
  11. 11.
    Barrios R, Skurski P, Simons J (2002) J Phys Chem B 10:7991.CrossRefGoogle Scholar
  12. 12.
    Berdys J, Anusiewicz I, Skurski P, Simons J (2004) J Am Chem Soc 126:6441.CrossRefGoogle Scholar
  13. 13.
    (a) Berdys J, Anusiewicz I, Skurski P, Simons J (2004) J Phys Chem A 108:2999; (b) Berdys J, Skurski P, Simons JJ (2004) Phys Chem B 108:5800.Google Scholar
  14. 14.
    Dabkowska I, Rak J, Gutowski M (2005) Eur Phys J D 35:429.CrossRefGoogle Scholar
  15. 15.
    Gu J, Xie Y, Schaefer HF III (2006) Chem Phys Chem 7:1885.Google Scholar
  16. 16.
    Adams RLP, Knowler JT, Leader DP (1981) The Biochemistry of the Nucleic Acids, 10th edn. Chapman and Hall, New York.Google Scholar
  17. 17.
    Swarts S, Sevilla M, Becker D, Tokar C, Wheeler K (1992) Radiat Res 129:333.CrossRefGoogle Scholar
  18. 18.
    Boudaïffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2002) Radiat Res 157:227.CrossRefGoogle Scholar
  19. 19.
    Porter MD, Bright TB, Allara DL, Chidsey CED (1987) J Am Chem Soc 109:3559.CrossRefGoogle Scholar
  20. 20.
    Dugal P, Huels MA, Sanche L (1999) Radiat Res 151:325.CrossRefGoogle Scholar
  21. 21.
    Dugal P, Abdoul-Carime H, Sanche L (2000) J Phys Chem B 104:5610.CrossRefGoogle Scholar
  22. 22.
    Abdoul-Carime H, Dugal PC, Sanche L (2000) Radiat Res 153:23.CrossRefGoogle Scholar
  23. 23.
    Kimball Physics Inc., ELG-2 electron gun, http://www.kimphys.com.Google Scholar
  24. 24.
    Nagesha K, Gamache J, Bass AD, Sanche L (1997) Rev Sci Instrum 68:3883.CrossRefGoogle Scholar
  25. 25.
    Marsolais RM, Deschênes M, Sanche L (1989) Rev Sci Instrum 60:2724.CrossRefGoogle Scholar
  26. 26.
    Meesungnoen J, Jay-Gerin J-P, Filali-Mouhim A, Mankhetkorn S (2002) Radiat Res 158:657.CrossRefGoogle Scholar
  27. 27.
    Zheng Y, Cloutier P, Wagner JR, Sanche L (2004) Rev Sci Instrum 75:4534.CrossRefGoogle Scholar
  28. 28.
    Kimmel GA, Orlando TM (1995) Phys Rev Lett 75:2606.CrossRefGoogle Scholar
  29. 29.
    Abdoul-Carime H, Dugal PC, Sanche L (2000) Surf Sci 451:102.CrossRefGoogle Scholar
  30. 30.
    Sanche L (1995) Scanning Microscopy 9:619.Google Scholar
  31. 31.
    Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Science 287:1658.CrossRefGoogle Scholar
  32. 32.
    Mott NF, Massey HSW (1965) The Theory of Atomic Collisions, Clarendon, Oxford.Google Scholar
  33. 33.
    Schulz GJ (1973) Rev Mod Phys 45:378,423.Google Scholar
  34. 34.
    Allan M (1989) J Electr Spectr Rel Phenom 48:219.CrossRefGoogle Scholar
  35. 35.
    Sanche L (1991) Excess Electrons in Dielectric Media, Jay-Gerin J-P and Ferradini C (eds), CRC Press, Boca Raton.Google Scholar
  36. 36.
    Christophorou LG (1984) Electron-Molecule Interactions and Their Applications, Academic Press, Orlando.Google Scholar
  37. 37.
    Massey HSW (1976) Negative Ions, University Press, London.Google Scholar
  38. 38.
    Palmer RE, Rous P (1992) Rev Mod Phys 64:383.CrossRefGoogle Scholar
  39. 39.
    Sanche L (2000) Surf Sci 451:82.CrossRefGoogle Scholar
  40. 40.
    Folkard M, Prise KM, Vojnovic B, Davies S, Roper MJ, Michael BD (1993) Int J Radiat Biol 64:651.CrossRefGoogle Scholar
  41. 41.
    Boudaïffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Méd Sci 16:1281.Google Scholar
  42. 42.
    Huels MA, Boudaïffa B, Cloutier P, Hunting D, Sanche L (2003) J Am Chem Soc 125:4467.CrossRefGoogle Scholar
  43. 43.
    Boudaiffa B, Hunting DJ, Cloutier P, Huels MA, Sanche L (2000) Int J Radiat Biol 76:1209.CrossRefGoogle Scholar
  44. 44.
    Bass AD, Parenteau L, Huels MA, Sanche L (1998) J Chem Phys 109:8635.CrossRefGoogle Scholar
  45. 45.
    Huels MA, Parenteau L, Sanche L (1997) Chem Phys Lett 279:223.CrossRefGoogle Scholar
  46. 46.
    Sieger MT, Simpson WC, Orlando TM (1998) Nature 394:554.CrossRefGoogle Scholar
  47. 47.
    Pan X, Cloutier P, Hunting D, Sanche L (2003) Phys Rev Lett 90:208102-1–208102-4.Google Scholar
  48. 48.
    Abdoul-Carime H, Cloutier P, Sanche L (2001) Radiat Res 155:625.CrossRefGoogle Scholar
  49. 49.
    Pan X, Abdoul-Carime H, Cloutier P, Bass AD, Sanche L (2005) Radiat Phys Chem 72:193.CrossRefGoogle Scholar
  50. 50.
    Antic D, Parenteau L, Lepage M, Sanche L (1999) J Phys Chem 103:6611.Google Scholar
  51. 51.
    PtasiñS, Denifl S, Grill V, Mörk TD, Scheier P, Gohlke S, Huels MA, Illenberger E (2005) Angew Chem Int Ed 44:1657.Google Scholar
  52. 52.
    Martin F, Burrow PD, Cai Z, Cloutier P, Hunting DJ, Sanche L (2004) Phys Rev Lett 93:068101.CrossRefGoogle Scholar
  53. 53.
    Aflatooni K, Gallup GA, Burrow PD (1998) J Phys Chem A 102:6205.CrossRefGoogle Scholar
  54. 54.
    Panajotovic R, Martin F, Cloutier P, Hunting DJ, Sanche L (2006) Radiat Res 165:452.CrossRefGoogle Scholar
  55. 55.
    Cai Z, Cloutier P, Hunting D, Sanche L (2006) Radiat Res 165:365.CrossRefGoogle Scholar
  56. 56.
    Henke BL, Knauer JP, Premaratne K (1981) J Appl Phys 52:1509.CrossRefGoogle Scholar
  57. 57.
    Henke BL, Smith JA, Attwood DT (1977) J Appl Phys 48:1852.CrossRefGoogle Scholar
  58. 58.
    Pan X, Sanche L (2005) Phys Rev Lett 94:198104.CrossRefGoogle Scholar
  59. 59.
    Crewe AV, Isaacson M, Johnson D (1971) Nature 231:262.CrossRefGoogle Scholar
  60. 60.
    Herve du Penhoat MA, Huels MA, Cloutier P, Jay-Gerin JP, Sanche L (2001) J Chem Phys 114:5755.CrossRefGoogle Scholar
  61. 61.
    Abdoul-Carime H, Sanche L (2001) Radiat Res 156:151.CrossRefGoogle Scholar
  62. 62.
    Abdoul-Carime H, Sanche L (2002) Int J Radiat Biol 78:89.CrossRefGoogle Scholar
  63. 63.
    Cai Z, Dextraze M-E, Cloutier P, Hunting D, Sanche L (2006) J Chem Phys 124:024705.CrossRefGoogle Scholar
  64. 64.
    Petrovykh DY, Kimura-Suda H, Tarlov M J, Whitman LJ (2004) Langmuir 20:429.CrossRefGoogle Scholar
  65. 65.
    Ray SG, Daube SS, Naaman R (2005) PNAS 102:15.CrossRefGoogle Scholar
  66. 66.
    Aqua T, Naaman R, Daube SS (2003) Langmuir 19:10573.CrossRefGoogle Scholar
  67. 67.
    Pan X, Sanche L (to be published).Google Scholar
  68. 68.
    Huels MA, Parenteau L, Sanche L (2004) J Phys Chem B 108:16303.CrossRefGoogle Scholar
  69. 69.
    Zheng Y, Cloutier P, Hunting DJ, Sanche L, Wagner JR (2005) J Am Chem Soc 127:16592.CrossRefGoogle Scholar
  70. 70.
    Zheng Y, Cloutier P, Hunting DJ, Wagner JR, Sanche L (2006) J Chem Phys 124:64710.CrossRefGoogle Scholar
  71. 71.
    Zheng Y, Wagner R, Sanche L (2006) Phys Rev Lett 96:208101.CrossRefGoogle Scholar
  72. 72.
    Zheng Y, Cloutier P, Hunting DJ, Wagner JR, Sanche L (2004) J Am Chem Soc 126:1002.CrossRefGoogle Scholar
  73. 73.
    Abdoul-Carime H, Gohlke S, Fischbach E, Scheike J, Illenberger E (2004) Chem Phys Lett 387:267.CrossRefGoogle Scholar
  74. 74.
    Becker D, Bryant-Friedrich A, Trzasko C, Sevilla MD (2003) Radiat Res 160:174.CrossRefGoogle Scholar
  75. 75.
    Becker D, Razskazovskii Y, Callaghan M, Sevilla MD (1996) Radiat Res 146:361.CrossRefGoogle Scholar
  76. 76.
    Shukla L, Pazdro R, Becker D, Sevilla MD (2005) Radiat Res 163:591.CrossRefGoogle Scholar
  77. 77.
    Range K, McGrath MJ, Lopez X, York DM (2004) J Am Chem Soc 126:1654.CrossRefGoogle Scholar
  78. 78.
    Rowntree P, Sambe H, Parenteau L, Sanche L (1993) Phys Rev B 47:4537.CrossRefGoogle Scholar
  79. 79.
    Hotop H, Ruf MW, Llan M, Fabrikant II (2003) Adv Atom Mol Opt Phys 49:85.Google Scholar
  80. 80.
    Berdys J, Anusiewicz I, Skurski P, Simons J (2004) J Am Chem Soc 125:6551.Google Scholar
  81. 81.
    Lévesque PL, Michaud M, Cho W, Sanche L (2005) J Chem Phys 122:224704.CrossRefGoogle Scholar
  82. 82.
    Winstead C, McKoy V (2007) Phys Rev Lett 98:113201.CrossRefGoogle Scholar
  83. 83.
    Caron LG, Sanche L (2003) Phys Rev Lett 91:113201; (2004) Phys Rev A 70:032719; (2005)72:32726.Google Scholar
  84. 84.
    Pan X, Sanche L (2006) Chem Phys Lett 421:404.CrossRefGoogle Scholar
  85. 85.
    Solomun T, Illenberger E (2004) Chem Phys Lett 396:448.CrossRefGoogle Scholar
  86. 86.
    Solomun T, Hultschig C, Hultschig C, Illenberger E (2005) Eur Phys J D 35:437.CrossRefGoogle Scholar
  87. 87.
    Tanabe T, Noda K, Saito M, Starikov EB, Tateno M (2004) Phys Rev Lett 93:043201.CrossRefGoogle Scholar
  88. 88.
    Ladik J, Fruechtl H, Otto P, Jöger J (1993) J Mol Struct 297:215.CrossRefGoogle Scholar
  89. 89.
    Ptasiñska S, Sanche L (2006) J Chem Phys 125:144713.CrossRefGoogle Scholar
  90. 90.
    Ptasiñska S, Sanche L (2007) Phys Chem Chem Phys 14:1730.CrossRefGoogle Scholar
  91. 91.
    Ptasiñska S, Sanche L (2007) Phys Rev E 75:031915.CrossRefGoogle Scholar
  92. 92.
    Abdoul-Carime H, Langer J, Huels MA, Illenberger E (2005) Eur Phys J D 35:399.CrossRefGoogle Scholar
  93. 93.
    Denifl S, Ptasiñ S, Probst M, Hrušák J, Scheier P, Mörk TD (2004) J Phys Chem A 108:6562.CrossRefGoogle Scholar
  94. 94.
    Denifl S, Ptasiñska S, Cingel M, Matejcik S, Scheier P, Mörk TD (2003) Chem Phys Lett 377:74.CrossRefGoogle Scholar
  95. 95.
    Ptasiñska S, Denifl S, Gohlke S, Scheier P, Illenberger E, Mörk TD (2006) Angew Chem Int Ed 45:1893.CrossRefGoogle Scholar
  96. 96.
    Burrow PD, Gallup GA, Scheer AM, Denifl S, Ptasiñska S, Mörk TD, Scheier P (2006) J Chem Phys 124:124310.CrossRefGoogle Scholar
  97. 97.
    Denifl S, Zappa F, Möhr I, Lecointre J, Probst M, Mörk TD, Scheier P (2006) Phys Rev Lett 97:043201.CrossRefGoogle Scholar
  98. 98.
    Hubert D, Beikircher M, Denifl S, Zappa F, Matejcik S, Bacher A, Grill V, Mörk TD, Scheier P (2006) J Chem Phys 125:084304.CrossRefGoogle Scholar
  99. 99.
    Ptasiñska S, Denifl S, Grill V, Mörk TD, Illenberger E, Scheier P (2005) Phys Rev Lett 95:093201.CrossRefGoogle Scholar
  100. 100.
    Ptasiñska S, Denifl S, Mróz B, Brobst M, Grill V, Illenberger E, Scheier P, Mörk TD (2005) J Chem Phys 123:124302.CrossRefGoogle Scholar
  101. 101.
    Sulzer P, Ptasiñska S, Zappa F, Mielewska B, Milosavljevic AR, Scheier P, Mark TD, Bald I, Gohlke S, Huels MA, Illenberger E (2006) J Chem Phys 125:044304.CrossRefGoogle Scholar
  102. 102.
    Abdoul-Carime H, Gohlke S, Illenberger E (2004) Phys Rev Lett 92:168103.CrossRefGoogle Scholar
  103. 103.
    Ptasiñska S, Denifl S, Scheier P, Illenberger E, Mörk TD (2005) Angew Chem Int Ed 44:6941.CrossRefGoogle Scholar
  104. 104.
    Caron LG, Sanche L (2005) Phys Rev A 72:032726.CrossRefGoogle Scholar
  105. 105.
    Caron LG, Sanche L (2006) Phys Rev A 73:062707.CrossRefGoogle Scholar
  106. 106.
    Tao NJ, Lindsay SM (1989) Biopolymers 28:1019.CrossRefGoogle Scholar
  107. 107.
    Simpson WC, Sieger MT, Orlando T, Parenteau L, Naghesha K, Sanche L (1997) J Chem Phys 107:8668.CrossRefGoogle Scholar
  108. 108.
    Casaes RN, Paul JB, McLaughlin RP, Saykally RJ, van Mourik T (2004) J Phys Chem A 108:10989; Choi MY, Miller RE (2005) Phys Chem Chem Phys 7:3565.CrossRefGoogle Scholar
  109. 109.
    Whitson KB, Lukan AM, Marlowe RL, Lee SA, Anthony L, Rupprecht A (1998) Phys Rev E 58:2370; Cavanaugh D, Lee SA (2002) J Biomol Struct Dyn 19:709.CrossRefGoogle Scholar
  110. 110.
    Gu J, Wang J, Lesczynski J (2006) J Am Chem Soc 128:322.Google Scholar
  111. 111.
    Li X, Sevilla MD, Sanche L (2003) J Am Chem Soc 125:3668.Google Scholar
  112. 112.
    Dabkowska I, Rak J, Gutowski M (2005) Eur Phys J D 35:29.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Léon Sanche
    • 1
  1. 1.Groupe en Sciences des Radiations Département de médecine nucléaire et de radiobiologie Faculté de médecineUniversité de SherbrookeQuébecCanada J1H 5N4

Personalised recommendations