Skip to main content

Variable Attachment to Plant Surface Waxes by Predatory Insects

  • Chapter
Functional Surfaces in Biology

Abstract

In this chapter we will (1) provide an overview of evidence of the influence of habitat characteristics on predation, (2) provide specific evidence for the importance of the plant as habitat, and of variability in plant morphology’s impact on the foraging of insect predators and parasitoids, (3) focus on the role of crystalline waxes on plant surfaces in mediating these types of interactions through their effects on insect attachment, (4) illustrate the implications of the variability of plant surface waxes and insect responses to surface waxes through a case study examining the attachment and performance of five species of predatory beetle on plants differing in surface wax, and (5) discuss implications for ecology of predation along with opportunities for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, A.A. and Karban, R. (1997) Domatia mediate plant-arthropod mutualism. Nature 387: 562–563.

    Article  CAS  Google Scholar 

  • Ã…hman, I. (1990) Plant-surface characteristics and movements of two Brassica-feeding aphids, Lipaphis erysimi and Brevicoryne brassicae. Symposium Biologica Hungarica 39: 119–125.

    Google Scholar 

  • Alyokhin, A. and Sewell, G. (2004) Changes in a lady beetle community following the establishment of three alien species. Biological Invasions 6: 463–471.

    Article  Google Scholar 

  • Andow, D.A. and Olson, D.M. (2003) Inheritance of host finding ability on structurally complex surfaces. Oecologia 136: 324–328.

    Article  PubMed  CAS  Google Scholar 

  • Baas, W.J. and Figdor, C.G. (1978) Triterpene composition of Hoya australis cuticular wax in relation to leaf age. Zeitschrift fur Pflanzenphysiologie 87: 243–253.

    CAS  Google Scholar 

  • Barthlott, W. and Neinhuis, C. (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202: 1–8.

    Article  CAS  Google Scholar 

  • Barthlott, W., Neinhuis, C., Cutler, D., Ditsch, F., Muesel, I., Theisen, I. and Wilhelm, H. (1998) Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society 126: 237–260.

    Article  Google Scholar 

  • Bell, W.J. (1991) Searching behavior: The behavioral ecology of finding resources, Chapman and Hall, London.

    Google Scholar 

  • Bernays, E. and Graham, M. (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69: 886–892.

    Article  Google Scholar 

  • Betz, O. and Kölsch, G. (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthropod Structure & Development 33: 3–30.

    Article  Google Scholar 

  • Beukers, J.S. and Jones, G.P. (1998) Habitat complexity modifies the impact of piscivores on a coral reef fish population. Oecologia 114: 50–59.

    Article  Google Scholar 

  • Blakeman, J.P. (1973) The chemical environment of the leaf surface with special reference to spore germination of pathogenic fungi. Pesticide Science 4: 575–588.

    Article  CAS  Google Scholar 

  • Bodnaryk, R.P. (1992) Leaf epicuticular wax, an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding in flea beetles, Phyllotreta cruciferae (Goeze). Canadian Journal of Plant Science 72: 1295–1303.

    Google Scholar 

  • Bottrell, D.G., Barbosa, P. and Gould, F. (1998) Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annual Review of Entomology 43: 347–367.

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois, M., Brethes, J.C. and Nadeau, M. (2006) Substrate effects on survival, growth and dispersal of juvenile sea scallop, Placopecten magellanicus (Gmelin 1791). Journal of Shellfish Research 25: 43–49.

    Article  Google Scholar 

  • Brennan, E.B., Weinbaum, S.A., Rosenheim, J.A. and Karban, R. (2001) Heteroblasty in Eucalyptus globulus (Myricales: Myricaceae) affects ovipositonal and settling preferences of Ctenarytaina eucalypti and C. spatulata (Homoptera: Psyllidae). Environmental Entomology 30: 1144–1149.

    Article  Google Scholar 

  • Byers, J.E. (2002) Physical habitat attribute mediates biotic resistance to non-indigenous species invasion. Oecologia 130: 146–156.

    Google Scholar 

  • Carter, M.C. and Dixon, A.F.G. (1982) Habitat quality and the foraging behavior of coccinellid larvae. Journal of Animal Ecology 51: 865–878.

    Article  Google Scholar 

  • Carter, M.C., Sutherland, D. and Dixon, A.F.G. (1984) Plant structure and the searching efficiency of coccinellid larvae. Oecologia 63: 394–397.

    Article  Google Scholar 

  • Carver, T.L.W., Thomas, B.J., Ingerson-Morris, S.M. and Roderick, H.W. (1990) The role of the abaxial leaf surface waxes of Lolium spp. in resistance to Erysiphe graminis. Plant Pathology 39: 573–583.

    Article  Google Scholar 

  • Cervantes, D., Eigenbrode, S.D., Ding, H. and Bosque-Perez, N. (2002) Oviposition preference of Hessian fly, Mayetiola destructor, on winter wheats varying in surface waxes. Journal of Chemical Ecology 28: 193–210.

    Article  PubMed  CAS  Google Scholar 

  • Chang, G.C. and Eigenbrode, S.D. (2004) Delineating the effects of a plant trait on interactions among associated insects. Oecologia 139: 123–130.

    Article  PubMed  Google Scholar 

  • Chang, G.C., Neufeld, J. and Eigenbrode, S.D. (2006) Leaf surface wax and plant morphology of peas influences insect density. submitted to Entomologia Experimentalis et Applicata 119: 197–205.

    Article  Google Scholar 

  • Chang, G.C., Neufeld, J., Duetting, P.S. and Eigenbrode, S.D. (2004) Waxy bloom in peas influences the performance and behavior of Aphidius ervi, a parasitoid of the pea aphid. Entomologia Experimentalis et Applicata 110: 257–265.

    Article  Google Scholar 

  • Cole, N.C., Jones, C.G. and Harris, S. (2005) The need for enemy-free space: The impact of an invasive gecko on island endemics. Biological Conservation 125: 467–474.

    Article  Google Scholar 

  • Colunga-Garcia, M. and Gage, S.H. (1998) Arrival, establishment, and habitat use of the multicolored Asian lady beetle (Coleoptera: Coccinellidae) in a Michigan landscape. Environmental Entomology 27: 1574–1580.

    Google Scholar 

  • Cortesero, A.M., Stapel, J.O. and Lewis, W.J. (2000) Understanding and manipulating plant attributes to enhance biological control. Biological Control 17: 35–49.

    Article  Google Scholar 

  • Denno, R.F., Lewis, D. and Gratton, C. (2005) Spatial variation in the relative strength of top-down and bottom-up forces: causes and consequences for phytophagous insect populations. Annales Zoologici Fennici 42: 295–311.

    Google Scholar 

  • Dolmer, P. (1998) The interactions between bed structure of Mytilus edulis L. and the predator Asterias rubens L. Journal of Experimental Marine Biology and Ecology 228: 137–150.

    Article  Google Scholar 

  • Duetting, P.S., Ding, H., Neufeld, J. and Eigenbrode, S.D. (2003) Plant waxy bloom on peas affects infection of pea aphids by Pandora neoaphidis. Journal of Invertebrate Pathology 84:149–158.

    Article  PubMed  Google Scholar 

  • Edwards, P.B. (1982) Do waxes on juvenile Eucalyptus leaves provide protection from grazing insects? Australian Journal of Ecology 7: 347–352.

    Article  Google Scholar 

  • Edwards, P.B. and Wanjura, W.J. (1991) Physical attributes of eucalypt leaves and the host range of chrysomelid beetles. In: Insects-plants ’89, ed. by Szentesi, A. and Jermy, T. Budapest: Akadémiai Kiadó, pp. 227–236.

    Google Scholar 

  • Eigenbrode, S.D. (2004) The effects of plant epicuticular waxy blooms on attachment and effectiveness of predatory insects. Arthropod Structure and Development 33: 91–102.

    Article  PubMed  CAS  Google Scholar 

  • Eigenbrode, S.D. and Espelie, K.E. (1995) Effects of plant epicuticular lipids on insect herbivores. Annual Review of Entomology 40: 171–194.

    Article  Google Scholar 

  • Eigenbrode, S.D. and Jetter, R. (2002) Attachment to plant surface waxes by an insect predator. Integrative and Comparative Biology 42: 1091–1099.

    Article  CAS  Google Scholar 

  • Eigenbrode, S.D. and Kabalo, N.N. (1999) Effects of Brassica oleracea waxblooms on predation and attachment by Hippodamia convergens. Entomologia Experimentalis et Applicata 91:125–130.

    Article  Google Scholar 

  • Eigenbrode, S.D. and Pillai, S.K. (1998) Neonate Plutella xylostella L. responses to surface wax components of a resistant cabbage (Brassica oleracea L.). Journal of Chemical Ecology 24: 1611–1627.

    Article  CAS  Google Scholar 

  • Eigenbrode, S.D., Castagnola, T., Roux, M.-B. and Steljes, L. (1996) Mobility of three generalist predators is greater on cabbage with glossy leaf wax than on cabbage with a wax bloom. Entomologia Experimentalis et Applicata 81: 335–343.

    Article  Google Scholar 

  • Eigenbrode, S.D., Kabalo, N.N. and Stoner, K.A. (1999) Predation, behavior, and attachment by Chrysoperla plorabunda larvae on Brassica oleracea with different surface waxblooms. Entomologia Experimentalis et Applicata 90: 225–235.

    Article  Google Scholar 

  • Eigenbrode, S.D., Rayor, L., Chow, J. and Latty, P. (2000) Effects of waxbloom variation in Brassica oleracea on foraging by a vespid wasp. Entomologia Experimentalis et Applicata 97: 161–166.

    Article  Google Scholar 

  • Eigenbrode, S.D., White, C., Rohde, M. and Simon, C.J. (1998a) Behavior and effectiveness of adult Hippodamia convergens (Coleoptera: Coccinellidae) as a predator of Acyrthosiphon pisum on a glossy-wax mutant of Pisum sativum. Environmental Entomology 91: 902–909.

    Google Scholar 

  • Eigenbrode, S.D., White, C., Rohde, M. and Simon, C.J. (1998b) Epicuticular wax phenotype of the wel mutation and its effect on pea aphid populations in the greenhouse and in the field. Pisum Genetics 29: 13–17.

    Google Scholar 

  • Eisner, T. and Aneshansley, D.J. (2000) Defense by foot adhesion in a beetle (Hemisphaerota cyanea). Proceedings of the National Academy of Sciences 97: 6568–6573.

    Article  CAS  Google Scholar 

  • Elberson, L. (1992) In Division of entomology, University of Idaho, Moscow.

    Google Scholar 

  • Evans, E.W. (2003) Searching and reproductive behaviour of female aphidophagous ladybirds (Coleoptera: Coccinellidae): a review. European Journal of Entomology 100: 1–10.

    Google Scholar 

  • Farji-Brener, A.G. (2003) Microhabitat selection by antlion larvae, Myrmeleon crudelis: Effect of soil particle size on pit-trap design and prey capture. Journal of Insect Behavior 16:783–796.

    Google Scholar 

  • Federle, W., Brüning, T. (2006) Ecology and biomechanics of slippery wax barriers and waxrunning in Macaranga-ant mutualisms. In: Ecology and biomechanics: A mechanical approach to the ecology of animals and plants, ed. by Herrel, A., Speck, T. and Rowe, N. Boca Raton: CRC Press, pp. 163–183.

    Google Scholar 

  • Federle, W., Maschwitz, U., Fiala, B., Riederer, M. and Hölldobler, B. (1997) Slippery ant-plants and skillful climbers: Selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euporbiaceae). Oecologia 112: 217–224.

    Article  Google Scholar 

  • Federle, W., Riehle, M., Curtis, A.S.G. and Full, R.J. (2002) An integrative study of insect adhesion: Mechanics and wet adhesion of pretarsal pads in ants. Integrative and Comparative Biology 42: 1100–1106.

    Article  Google Scholar 

  • Federle, W., Rohrseitz, K. and Hölldobler, B. (2000) Attachment forces of ants measured with a centrifuge: better ‘wax-runners’ have a poorer attachment to a smooth surface. The Journal of Experimental Biology 203: 505–512.

    PubMed  CAS  Google Scholar 

  • Finke, D.L. and Denno, R.F. (2002) Intraguild predation diminished in complex-structured vegetation: implications for prey suppression. Ecology 83: 643–652.

    Article  Google Scholar 

  • Frazer, B.D., Gilbert, N., Ives, P.M. and Raworth, D.A. (1981) Predation of aphids by coccinellid larvae. Canadian Entomologist 113: 1043–1046.

    Article  Google Scholar 

  • Gaume, L., Gorb, S. and Rowe, N. (2002) Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. New Phytologist 156: 479–489.

    Article  Google Scholar 

  • Gingras, D., Dutilleul, P. and Boivin, G. (2002) Modeling the impact of plant structure on host-finding behavior of parasitoids. Oecologia 130: 396–402.

    Article  Google Scholar 

  • Gingras, D., Dutilleul, P. and Boivin, G. (2003) Effect of plant structure on host finding capacity of lepidopterous pests of crucifers by two Trichogramma parasitoids. Biological Control27: 25–31.

    Article  Google Scholar 

  • Gorb, E., Haas, K., Henrich, A., Enders, S., Barbakadze, N. and Gorb, S. (2005) Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment. The Journal of Experimental Biology 208: 4651–4662.

    Article  PubMed  CAS  Google Scholar 

  • Gorb, E.V. and Gorb, S.N. (2002) Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomologia Experimentalis et Applicata 105: 13–28.

    Article  Google Scholar 

  • Gorb, E.V. and Gorb, S.N. (2006) Do plant waxes make insect attachment structures dirty? Experimental evidence for the contamination-hypothesis. In: Ecology and biomechanics: A mechanical approach to the ecology of animals and plants, ed. by Herrel, A., Speck, T. and Rowe, N. Boca Raton: CRC Press, pp. 147–162.

    Google Scholar 

  • Gorb, S.N. (2001) Attachment devices of the insect cuticle, Kluwer, Dordrecht.

    Google Scholar 

  • Grevstad, F.S. and Klepetka, B.W. (1992) The influence of plant architecture on the foraging efficiencies of a suite of ladybird beetles feeding on aphids. Oecologia 92: 399–404.

    Article  Google Scholar 

  • Hare, J.D. (1992) Effects of plant variation on herbivore-natural enemy interactions. In: Plant resistance to herbivores and pathogens, ed. by Fritz, R.S. and Simms, E.L. Chicago: University of Chicago Press, pp. 278–300.

    Google Scholar 

  • Hare, J.D. (2002) Plant genetic variation in tritrophic interactions. In: Multitrophic level interactions, ed. by Tscharntke, T. and Hawkins, B.A. Cambridge: Cambridge University Press, pp. 8–43.

    Chapter  Google Scholar 

  • Harley, R. (1991) The greasy pole syndrome. In: Ant – plant interactions, ed. by Huxley, C.R. and Cutler, D.F. Oxford: Oxford University Press, pp. 430–433.

    Google Scholar 

  • Heinen, J.T. (1993) Substrate choice and predation risk in newly metamorphosed American toads Bufo americanus – an experimental analysis. American Midland Naturalist 130:184–192.

    Article  Google Scholar 

  • Hodek, I. and Honek, A. (1996) Ecology of Coccinellidae, Kluwer Academic, Dordrecht.

    Google Scholar 

  • Holloway, P.J. (1969) Chemistry of leaf waxes in relation to wetting. Journal of Science and Food Agriculture 20: 124–128.

    Article  CAS  Google Scholar 

  • Jeffree, C.E. (1986) The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In: Insects and the plant surface, ed. by Juniper, B. and Southwood, T.R.E. London: Edward Arnold, pp. 23–64.

    Google Scholar 

  • Jetter, R., Schaffer, S. and Riederer, M. (2000) Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L. Plant Cell and Environment 23: 619–628.

    Article  CAS  Google Scholar 

  • Juniper, B.E. (1995) Waxes on plant surfaces and their interactions with insects. In: Waxes: chemistry, molecular biology and functions, ed. by Hamilton, R.J. Dundee, U.K.: The Oily Press, pp. 157–174.

    Google Scholar 

  • Juniper, B.E. and Burras, J.K. (1962) How pitcher plants trap insects. New Scientist 13: 75–77.

    Google Scholar 

  • Kareiva, P. and Sahakian, R. (1990) Tritrophic effects of a simple architectural mutation in pea plants. Nature 345: 433–434.

    Article  Google Scholar 

  • Kennedy, C.E.J. (1986) Attachment may be a basis for specialization in oak aphids. Ecological Entomology 11: 291–300.

    Article  Google Scholar 

  • Kennedy, G.G. (2003) Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annual Review of Entomology 48: 51–72.

    Article  CAS  Google Scholar 

  • Kicklighter, C.E. and Hay, M.E. (2006) Integrating prey defensive traits: Contrasts of marine worms from temperate and tropical habitats. Ecological Monographs 76: 195–215.

    Article  Google Scholar 

  • Knoll, F. (1914) Ãœber die Ursache des Ausgleitens der Insectenbeine an wachsbedekten Pflanzentheilen. Jahrbuch für wissenschaftliche Botanik 54: 448–497.

    Google Scholar 

  • Krebs, C. J. (1989) Ecological methodology. Harper & Row, New York, 652p.

    Google Scholar 

  • Legrand, A. and Barbosa, P. (2003) Plant morphological complexity impacts foraging efficiency of adult Coccinella septempunctata L. (Coleoptera : Coccinellidae). Environmental Entomology 32: 1219–1226.

    Article  Google Scholar 

  • Lill, J.T., Marquis, R.J. and Ricklefs, R.E. (2002) Host plants influence parasitism of forest caterpillars. Nature 417: 170–173.

    Article  PubMed  CAS  Google Scholar 

  • Marquis, R.J. and Whelan, C. (1996) Plant morphology and recruitment of the third trophic level: subtle and little-recognized defenses? Oikos 75: 330–334.

    Article  Google Scholar 

  • Marx, G.A. (1969) Two additional genes conditioning wax formation. Pisum Newsletter1: 10–11.

    Google Scholar 

  • McAuslane, H.J., Simmons, A.M. and Jackson, D.M. (2000) Parasitism of silverleaf whitefly, Bemisia argentifolii, on collard with reduced or normal leaf wax. Florida Entomologist 83: 428–437.

    Article  Google Scholar 

  • Michaud, J.P. (2002) Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea. Enviromental Entomology 31: 827–835.

    Article  Google Scholar 

  • Morris, B.D., Foster, S.P. and Harris, M.O. (2000) Identification of 1-octacosanal and 6-methoxy-2-benzoxazolinone from wheat as ovipositional stimulants for Hessian fly, Mayetiola destructor. Journal of Chemical Ecology 26: 859–867.

    Article  CAS  Google Scholar 

  • Müller, C., and Riederer, M. (2005) Plant surface properties in chemical ecology. Journal of Chemical Ecology 31: 2621–2651.

    Article  PubMed  CAS  Google Scholar 

  • Nemeth, R.S. (1998) The effect of natural variation in substrate architecture on the survival of juvenile bicolor damselfish. Environmental Biology of Fishes 53: 129–141.

    Article  Google Scholar 

  • Nielsen, K.A., Nicholson, R.L., Carver, T.L.W., Kunoh, H. and Oliver, R.P. (2000) First touch: an immediate response to surface recognition in conidia of Blumeria graminis. Physiological and Molecular Plant Pathology 56: 63–70.

    Article  Google Scholar 

  • Niemann, G.J. (1985) Biosynthesis of pentacyclic triterpenoids in leaves of Ilex aquifolium L. Planta 166: 51–56.

    Article  CAS  Google Scholar 

  • Nordlund, D.A., Lewis, W.J. and Altieri, M.A. (1988) Influences of plant-produced allelochemicals on the host/prey selection behavior of entomophagous insects. In: Novel aspects of insect-plant interactions, ed. by Barbosa, P. and Letourneau, D. New York: John Wiley & Son, pp. 65–83.

    Google Scholar 

  • Obrycki, J.J. and Kring, T. (1998) Predacious coccinellids in biological control. Annual Review of Entomology 43: 295–321.

    Article  PubMed  CAS  Google Scholar 

  • Obrycki, J.J., Krafsur, E.S., Bogran, C.E., Gomez, L.E. and Cave, R.E. (2001) Comparative studies of three populations of the lady beetle predator Hippodamia convergens (Coleoptera: Coccinellidae). Florida Entomologist 84: 55–62.

    Article  CAS  Google Scholar 

  • Osawa, N. (2000) Population field studies on the aphidophagous ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae): resource tracking and population characteristics. Population Ecology 42: 115–127.

    Article  Google Scholar 

  • Peressadko, A.G. and Gorb, S.N. (2004) Surface profile and friction force generated by insects. Fortschritt-berichte VDI, First International Industrial Conference Bionik 15 (249): 257–263.

    Google Scholar 

  • Pimentel, D. (1961) An evaluation of insect resistance in broccoli, Brussels sprouts, cabbage, collards, and kale. Journal of Economic Entomology 54: 156–158.

    Google Scholar 

  • Pimentel, D. and Wheeler, A. (1973) Influence of alfalfa resistance on a pea aphid population and its associated parasites, predators, and competitors. Environmental Entomology 2: 1–11.

    Google Scholar 

  • Price, P.W., Bouton, C.E., Gross, P., McPheron, B.A., Thompson, J.N. and Weis, A.E. (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics 11: 41–63.

    Article  Google Scholar 

  • Ratnam, D.A., Pavlou, S. and Fredrickson, A.G. (1982) Effects of attachment of bacteria to chemostat walls in a microbial predator-prey relationship. Biotechnology and Bioengineering 24: 2675–2694.

    Article  PubMed  CAS  Google Scholar 

  • Riedel, M., Eichner, A. and Jetter, R. (2003) Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218: 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Riederer, M. and Markstädter, C. (1996) Cuticular waxes: a critical assessment of current knowledge. In: Plant cuticles, an integrated functional approach, ed. by Kerstiens, G. Oxford: BIOS Scientific Publishers, pp. 189–200.

    Google Scholar 

  • Riederer, M. and Müller, C. (Eds.) (2006) Biology of the plant cuticle, Blackwell Publishing.

    Google Scholar 

  • Roda, A., Nyrop, J., English-Loeb, G. and Dicke, M. (2001) Leaf pubescence and two-spotted spider mite webbing influence phytoseiid behavior and population density. Oecologia 129: 551–560.

    Google Scholar 

  • Rodriguezzaragoza, S. (1994) Ecology of free-living Amebas. Critical Reviews in Microbiology 20: 225–241.

    Article  CAS  Google Scholar 

  • Romeis, J., Babendreier, D., Wackers, F.L. and Shanower, T.G. (2005) Habitat and plant specificity of Trichogramma egg parasitoids – underlying mechanisms and implications. Basic and Applied Ecology 6: 215–236.

    Article  Google Scholar 

  • Rutledge, C.E. and Eigenbrode, S.D. (2003) Epicuticular wax on pea plants decreases instantaneous search rate of Hippodamia convergens larvae and reduces their attachment to leaf surfaces. The Canadian Entomologist 135: 93–101.

    Article  Google Scholar 

  • Rutledge, C.E., Robinson, A. and Eigenbrode, S.D. (2003) Effects of a simple plant morphological mutation on the arthropod community and the impacts of predators on a principal insect herbivore. Oecologia 135: 39–50.

    PubMed  Google Scholar 

  • Rypstra, A.L., Carter, P.E., Balfour, R.A. and Marshall, S.D. (1999) Architectural features of agricultural habitats and their impact on the spider inhabitants. Journal of Arachnology 27: 371–377.

    Google Scholar 

  • Sakuratani, Y., Matsumoto, Y., Oka, M., Kubo, T., Fujii, A., Uotani, M. and Teraguchi, T. (2000) Life history of Adalia bipunctata (Coleoptera: Coccinellidae) in Japan. European Journal of Entomology 97: 555–558.

    Google Scholar 

  • Schönherr, J. (1976) Water permeability of isolated cuticular membranes: the effects of cuticular waxes on diffusion of water. Planta 131: 159–164.

    Google Scholar 

  • Shah, M.A. (1982) The influence of plant surfaces on the searching behavior of Coccinellid larvae. Entomologia Experimentalis et Applicata 31: 377–380.

    Google Scholar 

  • Smith, M.T. and Severson, R.F. (1992) Host recognition by the blackmargined aphid (Homoptera: Aphididae) on pecan. Journal of Entomological Science 27: 93–112.

    CAS  Google Scholar 

  • Snyder, W.E. and Evans, E.W. (2006) Ecological effects of invasive, arthropod generalist predators. Annual Review of Ecology Evolution and Systematics 37: 95–122.

    Article  Google Scholar 

  • Snyder, W.E., Clevenger, G.M. and Eigenbrode, S.D. (2004) Intraguild predation and the replacement of native ladybird beetles by exotics. Oecologia 140: 559–565.

    Article  PubMed  Google Scholar 

  • Sotka, E.E., Hay, M.E. and Thomas, J.D. (1999) Host-plant specialization by a non-herbivorous amphipod: advantages for the amphipod and costs for the seaweed. Oecologia 118: 471–482.

    Article  Google Scholar 

  • Spencer, J.L. (1996) Waxes enhance Plutella xylostella oviposition in response to sinigrin and cabbage homogenates. Entomologia Experimentalis et Applicata 81: 165–173.

    Article  Google Scholar 

  • Spencer, J.L., Pillai, S. and Bernays, E.A. (1999) Synergism in the oviposition behavior of Plutella xylostella: sinigrin and wax compounds. Journal of Insect Behavior 12: 483–500.

    Article  Google Scholar 

  • Stork, N.E. (1980) Role of waxblooms in preventing attachment to brassicas by the mustard beetle, Phaedon cochleariae. Entomologia Experimentalis et Applicata 28: 100–107.

    Google Scholar 

  • Udayagiri, S. and Mason, C.E. (1995) Host plant constituents as oviposition stimulants for a generalist herbivore: European corn borer. Entomologia Experimentalis et Applicata 76: 59–95.

    Article  Google Scholar 

  • Udayagiri, S. and Mason, C.E. (1997) Epicuticular wax chemicals in Zea mays influence oviposition in Ostrinia nubilalis. Journal of Chemical Ecology 23: 1675–1687.

    Google Scholar 

  • Vötsch, W., Nicholson, G., Müller, R., Stierhof, Y.D., Gorb, S. and Schwarz, U. (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochemistry and Molecular Biology 32: 1605–1613.

    Article  PubMed  Google Scholar 

  • Walton, T.J. (1990) Waxes, cutin and suberin. In: Methods in plant biochemistry, ed. by Dey, P.M. and Harborne, J.B. San Diego, CA: Academic Press Inc., pp. 105–158.

    Google Scholar 

  • Webster, M.M. and Hart, P.J.B. (2004) Substrate discrimination and preference in foraging fish. Animal Behaviour 68: 1071–1077.

    Article  Google Scholar 

  • White, C. and Eigenbrode, S.D. (2000a) Effects of surface wax variation in Pisum sativum L. on herbivorous and entomophagous insects in the field. Environmental Entomology 29: 776–780.

    Article  Google Scholar 

  • White, C. and Eigenbrode, S.D. (2000b) Leaf surface waxbloom in Pisum sativum influences predation and intra-guild interactions involving two predator species. Oecologia 124: 252–259.

    Article  Google Scholar 

  • Yang, G., Espelie, K.E., Todd, J.W., Culbreath, A.K., Pittman, R.N. and Demeski, J.W. (1993) Cuticular lipids from wild and cultivated peanuts and the relative resistance of these peanut species to fall armyworm and thrips. Journal of Agricultural and Food Chemistry 41: 814–818.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanford D. Eigenbrode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Eigenbrode, S.D., Snyder, W.E., Clevenger, G., Ding, H., Gorb, S.N. (2009). Variable Attachment to Plant Surface Waxes by Predatory Insects. In: Gorb, S.N. (eds) Functional Surfaces in Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6695-5_7

Download citation

Publish with us

Policies and ethics