The Impact of Population Growth on the Epidemiology and Evolution of Infectious Diseases

  • Geoffrey P. Garnett
  • James J. C. Lewis
Part of the International Studies in Population book series (ISIP, volume 6)

It is generally expected that in developing countries the epidemiological transition, with improved health and lower mortality rates, will eventually lead to a demographic transition with lower fertility rates. The reductions in mortality characterising the epidemiological transition are often associated with controlling the infectious diseases within populations, which leaves the chronic diseases associated with old age, cancer and heart disease dominating the causes of death. However, if the demographic transition does not occur quickly, populations can grow rapidly, creating an increased potential for spread of infectious disease. These infectious diseases could, in turn, increase death rates amongst young people and reverse the epidemiological transition. The relationship between population growth, size and infection depends upon the changes in contact pattern associated with there being more people. If facilities can keep pace with growth, then the increase in contact rates can be kept to a minimum, and the potential reversal in the epidemic transition prevented. This makes development a crucial adjunct to population growth if the global community is not to be increasingly exposed to pandemics of infectious disease. Here we review the epidemiological and demographic theory which relates population growth and infectious disease.


Demographic Transition Contact Rate Measle Vaccine Contact Pattern Reproductive Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, R. M. & May, R. M. (1991). Infectious diseases of humans: Dynamics and control. (Oxford: Oxford University Press)Google Scholar
  2. 2.
    Nikiforuk, A. (1993). The fourth horseman: A short history of epidemics, plagues and other scourges. (London: Phoenix)Google Scholar
  3. 3.
    McNeill, W. H. (1976). Plagues and peoples. (New York: Penguin Books)Google Scholar
  4. 4.
    Ewald, P. W. (2002). Plague time: The new germ theory of disease. (New York: Anchor Books)Google Scholar
  5. 5.
    Little, T. J. & Ebert, D. (2001). Temporal patterns of genetic variation for resistance and infectivity in a Daphnia-microparasite system. Evolution; International Journal of Organic Evolution, 55(6), 1146–1152Google Scholar
  6. 6.
    McCallum, H., Barlow, N. & Hone, J. (2001). How should pathogen transmission be modelled? Trends in Ecology and Evolution, 16(6), 295–300CrossRefGoogle Scholar
  7. 7.
    de Jong, M. C. M., Diekmann, O. & Heesterbeek, H. (1995). How does transmission of infection depend on population size? (In D. Mollison (Ed.), Epidemic models: Their structure and relation to data (pp. 84–94). Cambridge: Cambridge University Press)Google Scholar
  8. 8.
    Begon, M., Bennett, M., Bowers, R. G., French, N. P., Hazel, S. M. & Turner, J. (2002). A clarification of transmission terms in host-microparasite models: Numbers, densities and areas. Epidemiology and Infection, 129(1), 147–153CrossRefGoogle Scholar
  9. 9.
    Black, F. L. (1996). Measles endemicity in insular populations: Critical community size and its evolutionary implication. Journal of Theoretical Biology, 11, 207–211CrossRefGoogle Scholar
  10. 10.
    Bartlett, M. S. (1960). The critical community size for measles in the United States. Journal of the Royal Statistical Society, 123, 37–44Google Scholar
  11. 11.
    Anderson, R. M. & May, R. M. (1986). The invasion, persistence and spread of infectious diseases within animal and plant communities. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314(1167), 533–570CrossRefGoogle Scholar
  12. 12.
    Finkenstadt, B. & Grenfell, B. (1998). Empirical determinants of measles metapopulation dynamics in England and Wales. Proceedings of the Royal Society of London. Series B, Biological Sciences, 265(1392), 211–220CrossRefGoogle Scholar
  13. 13.
    Grenfell, B. T., Bjornstad, O. N. & Kappey, J. (2001). Travelling waves and spatial hierarchies in measles epidemics. Nature, 414(6865), 716–723CrossRefGoogle Scholar
  14. 14.
    London, W. P. & Yorke, J. A. (1973). Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates. American Journal of Epidemiology, 98(6), 453–468Google Scholar
  15. 15.
    Aaby, P., Bukh, J., Lisse, I. M. & da Silva, M. C. (1988). Decline in measles mortality: Nutrition, age at infection, or exposure? British Medical Journal (Clinical Research Ed), 296(6631), 1225–1228CrossRefGoogle Scholar
  16. 16.
    Sultan, B., Labadi, K., Guegan, J. F. & Janicot, S. (2005). Climate drives the meningitis epidemics onset in West Africa. PLoS Medicine, 2(1), e6CrossRefGoogle Scholar
  17. 17.
    McLean, A. R. & Anderson, R. M. (1988). Measles in developing countries. Part I. Epidemiological parameters and patterns. Epidemiology and Infection, 100(1), 111–133CrossRefGoogle Scholar
  18. 18.
    Aaby, P., Samb, B., Simondon, F., et al. (1996). Five year follow-up of morbidity and mortality among recipients of high-titre measles vaccines in Senegal. Vaccine, 14(3), 226–229CrossRefGoogle Scholar
  19. 19.
    Evans, A. S. & Kaslow, R. A. (1997). Viral infections of humans: Epidemiology and control. 4th edn. (New York: Plenum Publishing)Google Scholar
  20. 20.
    Garnett, G. P. & Grenfell, B. T. (1992). The epidemiology of varicella-zoster virus infections: A mathematical model. Epidemiology and Infection, 108(3), 495–511CrossRefGoogle Scholar
  21. 21.
    Siemer, S. W., Uder, M., Scholz, M., Steffens, J., Jeanelle, J. P. & Humke, U. (1997). Are low vaccination rates responsible for increased incidence of mumps orchitis in adolescents and adults? Der urologe. Ausg A, 36(5), 456–459CrossRefGoogle Scholar
  22. 22.
    Panagiotopoulos, T., Antoniadou, I. and Valassi-Adam, E. (1999). Increase in congenital rubella occurrence after immunisation in Greece: Rretrospective survey and systematic review. BMJ (Clinical Research ed.), 319(7223), 1462–1467Google Scholar
  23. 23.
    The World Bank (1993). World Development Report. WashingtonGoogle Scholar
  24. 24.
    Short, T. (1750). New observations, natural, moral, civil, political and medical, on city, town and country bills of mortality. (London: Longman & Millar)Google Scholar
  25. 25.
    Platt, C. (1996). King death: The black death and its aftermath in late medieval England. (London: UCL Press)Google Scholar
  26. 26.
    UNAIDS Epidemiology Reference Group (2002). Improved methods and assumptions for estimation of the HIV/AIDS epidemic and its impact: Recommendations of the UNAIDS Reference Group on estimates, modelling and projections. AIDS, 16(9), W1–14CrossRefGoogle Scholar
  27. 27.
    Dabis, F., Elenga, N., Meda, N., et al. (2001). 18-Month mortality and perinatal exposure to zidovudine in West Africa. AIDS, 15(6), 771–779CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Sewankambo, N. K., Wawer, M. J., Gray, R. H., et al. (1994). Demographic Impact of HIV-infection in Rural Rakai District, Uganda - Results of a population-based cohort study. AIDS, 8(12), 1707–1713CrossRefGoogle Scholar
  30. 30.
    Kamali, A., Quigley, M., Nakiyingi, J., et al. (2003). Syndromic management of sexually-transmitted infections and behaviour change interventions on transmission of HIV-1 in rural Uganda: A community randomised trial. The Lancet, 361(9358), 645–652CrossRefGoogle Scholar
  31. 31.
    Kilian, A. H., Gregson, S., Ndyanabangi, B., et al. (1999). Reductions in risk behaviour provide the most consistent explanation for declining HIV-1 prevalence in Uganda. AIDS, 13(3), 391–398CrossRefGoogle Scholar
  32. 32.
    Gray, R. H., Wawer, M. J., Serwadda, D., et al. (1998). Population-based study of fertility in women with HIV-1 infection in Uganda. The Lancet, 351(9096), 98–103CrossRefGoogle Scholar
  33. 33.
    Garnett, G. P., Swinton, J., Brunham, R. C. & Anderson, R. M. (1992). Gonococcal infection, infertility, and population growth: II. The influence of heterogeneity in sexual behaviour. IMA Journal of Mathematics Applied in Medicine and Biology, 9(2), 127–144CrossRefGoogle Scholar
  34. 34.
    Zaba, B. & Campbell, O. M. (1994). The impact of eliminating sterility on population growth. Sexually Transmitted Diseases, 21(5), 289–291CrossRefGoogle Scholar
  35. 35.
    Garnett, G. P. & Anderson, R. M. (1996). Sexually transmitted diseases and sexual behavior: Insights from mathematical models. Journal of Infectious Diseases. 174(Suppl 2), S150–161Google Scholar
  36. 36.
    Brunham, R. C. (1997). Core group theory: A central concept in STD epidemiology. Venereology, 10(1), 34–39Google Scholar
  37. 37.
    Lewis, J. J. C., Ronsmans, C., Ezeh, A. & Gregson, S. (2004). The population impact of HIV on fertility in sub-Saharan Africa. AIDS, 18(Suppl 2), S35–S43CrossRefGoogle Scholar
  38. 38.
    Brunham, R. C., Garnett, G. P., Swinton, J. and Anderson, R. M. (1991). Gonococcal infection and human fertility in sub-Saharan Africa. Proceedings of the Royal Society of London. Series B, Biological Sciences, 246(1316), 173–177CrossRefGoogle Scholar
  39. 39.
    Gregson, S., Nyamukapa, C. A., Garnett, G. P., et al. (2002). Sexual mixing patterns and sex-differentials in teenage exposure to HIV infection in rural Zimbabwe. The Lancet, 359(9321), 1896–1903CrossRefGoogle Scholar
  40. 40.
    Riley, S., Fraser, C., Donnelly, C. A., et al. (2003). Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions. Science, 300(5627), 1961–1966CrossRefGoogle Scholar
  41. 41.
    Leroy, E. M., Rouquet, P., Formenty, P., et al. (2004). Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science, 303(5656), 387–390CrossRefGoogle Scholar
  42. 42.
    Normile, D. (2004). Infectious diseases. Stopping Asia’s avian flu: A worrisome third outbreak. Science, 303(5657), 447CrossRefGoogle Scholar
  43. 43.
    Khan, A. S. & Young, J. C. (2001). Hantavirus pulmonary syndrome: At the crossroads. Current Opinion in Infectious Diseases, 14(2), 205–209CrossRefGoogle Scholar
  44. 44.
    Quetel, C. (1990). History of syphilis. (Cambridge: Polity Press)Google Scholar
  45. 45.
    Cliff, A., Haggett, P. & Smallman-Raynor, M. (1998). Deciphering global epidemics. (Cambridge: Cambridge University Press)Google Scholar
  46. 46.
    Morse, S. S. (1994). The viruses of the future? Emerging viruses and evolution. (In S. S. Morse (Ed.), The evolutionary biology of viruses. (pp. 325–335). New York: Raven Press)Google Scholar
  47. 47.
    UN Population Division (2001). World urbanization prospects: The 2001 revision. (New York: UN)Google Scholar
  48. 48.
    Habib, N. & Behrens, R. (2000). Travel health and infectious disease. (London: Nuffield Trust)Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Geoffrey P. Garnett
    • 1
  • James J. C. Lewis
    • 2
  1. 1.Department of Infectious Disease EpidemiologyImperial College LondonNorfolk PlaceUK
  2. 2.Department of Epidemiology and Population HealthLondon School of Hygiene and Tropical MedicineUK

Personalised recommendations