Treatment of Crimean-Congo Hemorrhagic Fever

  • Onder Ergonul
  • Ali Mirazimi
  • Dimiter S. Dimitrov

Ribavirin is a synthetic purine nucleoside analog with a modified base and D-ribose sugar, also known as virazol, first synthesized by Sidwell and colleagues in 1972 [43, 49] (Fig. 19-1). It is of particular interest, because it was the first synthetic nucleoside to exhibit broad spectrum antiviral activity, and it is one of few antiviral drugs in clinical use effective against agents other than HIV and herpesviruses [43]. It inhibits the replication of a wide range of RNA and DNA viruses in vitro, including orthomyxo, paramyxo, arena, bunya, flavi, herpes, adeno, pox, and retroviruses [49]. In current clinical practice, ribavirin is commonly used for certain viral infections (Table 19-1). Most notably, it is used in combination with interferon-α for treatment of HCV infection [66]. Ribavirin aerosol is used for treatment of pediatric infection by respiratory syncytial virus [19]. It is the only antiviral drug that could be also used in viral hemorrhagic fever syndromes. Besides Crimean- Congo hemorrhagic fever (CCHF), it is used in Lassa fever [70]. Viruses in the Bunyaviridae family are generally sensitive to ribavirin [92]. A prospective, randomized, double-blind, placebo-controlled trial of 242 patients with serologically confirmed Hantaan virus in the People’s Republic of China found a sevenfold decrease in mortality among ribavirin-treated patients [54], other studies did not confirm these benefits. Ribavirin was found to be effective against CCHF virus (CCHFV) in vitro [99, 104].


Respiratory Syncytial Virus Disseminate Intravascular Coagulation Disseminate Intravascular Coagulation Hemorrhagic Fever Hemorrhagic Fever With Renal Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Altaf A, Luby S, Ahmed AJ, Zaidi N, Khan AJ, Mirza S, McCormick J, Fisher-Hoch S (1998) Outbreak of Crimean-Congo haemorrhagic fever in Quetta, Pakistan: contact tracing and risk assessment. Trop Med Int Health 3:878–882.PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson SL, Carton JM, Lou J, Xing L, Rubin BY (1999) Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. Virology 256:8–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Andersson I, Bladh L, Mousavi-Jazi M, Magnusson KE, Lundkvist A, Haller O, Mirazimi A (2004) Human MxA protein inhibits the replication of Crimean-Congo hemorrhagic fever virus. J Virol 78:4323–4329.PubMedCrossRefGoogle Scholar
  4. 4.
    Andersson I, Lundkvist A, Haller O, Mirazimi A (2006) Type I interferon inhibits Crimean-Congo hemorrhagic fever virus in human target cells. J Med Virol 78:216–222.PubMedCrossRefGoogle Scholar
  5. 5.
    Andrei G, De Clercq E (1990) Inhibitory effect of selected antiviral compounds on arenavirus replication in vitro. Antiviral Res 14:287–299.PubMedCrossRefGoogle Scholar
  6. 6.
    Andrei G, De Clercq E (1993) Molecular approaches for the treatment of hemorrhagic fever virus infections. Antiviral Res 22:45–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Asper M, Sternsdorf T, Hass M, Drosten C, Rhode A, Schmitz H, Gunther S (2004) Inhibition of different Lassa virus strains by alpha and gamma interferons and comparison with a less pathogenic arenavirus. J Virol 78:3162–3169.PubMedCrossRefGoogle Scholar
  8. 8.
    Baba M, Nakajima M, Schols D, Pauwels R, Balzarini J, De Clercq E (1988) Pentosan polysulfate, a sulfated oligosaccharide, is a potent and selective anti-HIV agent in vitro. Antiviral Res 9:335–343.PubMedCrossRefGoogle Scholar
  9. 9.
    Baba M, Pauwels R, Balzarini J, Arnout J, Desmyter J, De Clercq E (1988) Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc Natl Acad Sci USA 85:6132–6136.PubMedCrossRefGoogle Scholar
  10. 10.
    Baba M, Snoeck R, Pauwels R, de Clercq E (1988) Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother 32:1742–1745.PubMedGoogle Scholar
  11. 11.
    Bakir M, Ugurlu M, Dokuzoguz B, Bodur H, Tasyaran MA, Vahaboglu H (2005) Crimean-Congo haemorrhagic fever outbreak in Middle Anatolia: a multicentre study of clinical features and outcome measures. J Med Microbiol 54:385–389.PubMedCrossRefGoogle Scholar
  12. 12.
    Bekisz J, Schmeisser H, Hernandez J, Goldman ND, Zoon KC (2004) Human interferons alpha, beta and omega. Growth Factors 22:243–251.PubMedCrossRefGoogle Scholar
  13. 13.
    Bertolotti-Ciarlet A, Smith J, Strecker K, Paragas J, Altamura LA, McFalls JM, Frias-Staheli N, Garcia-Sastre A, Schmaljohn CS, Doms RW (2005) Cellular localization and antigenic characterization of Crimean-Congo hemorrhagic fever virus glycoproteins. J Virol 79:6152–6161.PubMedCrossRefGoogle Scholar
  14. 14.
    Borish LC, Steinke JW (2003) 2. Cytokines and chemokines. J Allergy Clin Immunol 111:S460–475.PubMedCrossRefGoogle Scholar
  15. 15.
    Bradbury J (2005) RNA interference: new drugs on the horizon. Drug Discov Today 10:1266–1267.PubMedCrossRefGoogle Scholar
  16. 16.
    Casadevall A (2002) Passive antibody administration (immediate immunity) as a specific defense against biological weapons. Emerg Infect Dis 8:833–841.PubMedGoogle Scholar
  17. 17.
    Chiou HE, Liu CL, Buttrey MJ, Kuo HP, Liu HW, Kuo HT, Lu YT (2005) Adverse effects of ribavirin and outcome in severe acute respiratory syndrome: experience in two medical centers. Chest 128:263–272.PubMedCrossRefGoogle Scholar
  18. 18.
    Clemens MJ (2003) Interferons and apoptosis. J Interferon Cytokine Res 23:277–292.PubMedCrossRefGoogle Scholar
  19. 19.
    Cooper AC, Banasiak NC, Allen PJ (2003) Management and prevention strategies for respiratory syncytial virus (RSV) bronchiolitis in infants and young children: a review of evidence-based practice interventions. Pediatr Nurs 29:452–456.PubMedGoogle Scholar
  20. 20.
    De Clercq E (2005) Interferon: ten stories in one. A short review of some of the highlights in the history of an almost quinquagenarian. Acta Microbiol Immunol Hung 52:273–289.Google Scholar
  21. 21.
    de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BR (2001) Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69:912–920.PubMedGoogle Scholar
  22. 22.
    Der SD, Zhou A, Williams BR, Silverman RH (1998) Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA 95:15623–15628.PubMedCrossRefGoogle Scholar
  23. 23.
    Diamond MS, Harris E (2001) Interferon inhibits dengue virus infection by preventing translation of viral RNA through a PKR-independent mechanism. Virology 289:297–311.PubMedCrossRefGoogle Scholar
  24. 24.
    Dimitrov DS (2004) Virus entry: molecular mechanisms and biomedical applications. Nat Rev Microbiol 2:109–122.PubMedCrossRefGoogle Scholar
  25. 25.
    Dusheiko G, Main J, Thomas H, Reichard O, Lee C, Dhillon A, Rassam S, Fryden A, Reesink H, Bassendine M, Norkrans G, Cuypers T, Lelie N, Telfer P, Watson J, Weegink C, Sillikens P, Weiland O (1996) Ribavirin treatment for patients with chronic hepatitis C: results of a placebo-controlled study. J Hepatol 25:591–598.PubMedCrossRefGoogle Scholar
  26. 26.
    Ergonul O, Celikbas A, Dokuzoguz B, Eren S, Baykam N, Esener H (2004) Characteristics of patients with Crimean-Congo hemorrhagic fever in a recent outbreak in Turkey and impact of oral ribavirin therapy. Clin Infect Dis 39:284–287.PubMedCrossRefGoogle Scholar
  27. 27.
    Ergonul O (2006) Crimean-Congo haemorrhagic fever. Lancet Infect Dis 6:203–214.PubMedCrossRefGoogle Scholar
  28. 28.
    Ergonul O, Celikbas A, Baykam N, Eren S, Dokuzoguz B (2006) Analysis of risk-factors among patients with Crimean-Congo haemorrhagic fever virus infection: severity criteria revisited. Clin Microbiol Infect 12:551–554.PubMedCrossRefGoogle Scholar
  29. 29.
    Ergonul O, Tuncbilek S, Baykam N, Celikbas A, Dokuzoguz B (2006) Evaluation of serum levels of interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha in patients with Crimean-Congo hemorrhagic fever. J Infect Dis 193:941–944.PubMedCrossRefGoogle Scholar
  30. 30.
    Espert L, Degols G, Gongora C, Blondel D, Williams BR, Silverman RH, Mechti N (2003) ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses. J Biol Chem 278:16151–16158.PubMedCrossRefGoogle Scholar
  31. 31.
    Espert L, Rey C, Gonzalez L, Degols G, Chelbi-Alix MK, Mechti N, Gongora C (2004) The exonuclease ISG20 is directly induced by synthetic dsRNA via NF-kappaB and IRF1 activation. Oncogene 23:4636–4640.PubMedCrossRefGoogle Scholar
  32. 32.
    Espert L, Degols G, Lin YL, Vincent T, Benkirane M, Mechti N (2005) Interferon-induced exonuclease ISG20 exhibits an antiviral activity against human immunodeficiency virus type 1. J Gen Virol 86:2221–2229.PubMedCrossRefGoogle Scholar
  33. 33.
    Fisher-Hoch SP, Khan JA, Rehman S, Mirza S, Khurshid M, McCormick JB (1995) Crimean Congo-haemorrhagic fever treated with oral ribavirin. Lancet 346: 472–475.PubMedCrossRefGoogle Scholar
  34. 34.
    Flick R, Flick K, Feldmann H, Elgh F (2003) Reverse genetics for Crimean-Congo hemorrhagic fever virus. J Virol 77:5997–6006.PubMedCrossRefGoogle Scholar
  35. 35.
    Franchini M, Lippi G, Manzato F (2006) Recent acquisitions in the pathophysiology, diagnosis and treatment of disseminated intravascular coagulation. Thromb J 4:4.PubMedCrossRefGoogle Scholar
  36. 36.
    Frese M, Kochs G, Meier-Dieter U, Siebler J, Haller O (1995) Human MxA protein inhibits tick-borne Thogoto virus but not Dhori virus. J Virol 69:3904–3909.PubMedGoogle Scholar
  37. 37.
    Frese M, Kochs G, Feldmann H, Hertkorn C, Haller O (1996) Inhibition of bunyaviruses, phleboviruses, and hantaviruses by human MxA protein. J Virol 70:915–923.PubMedGoogle Scholar
  38. 38.
    Frese M, Pietschmann T, Moradpour D, Haller O, Bartenschlager R (2001) Interferon-alpha inhibits hepatitis C virus subgenomic RNA replication by an MxA-independent pathway. J Gen Virol 82:723–733.PubMedGoogle Scholar
  39. 39.
    Garcia KC, Teyton L, Wilson IA (1999) Structural basis of T cell recognition. Annu Rev Immunol 17:369–397.PubMedCrossRefGoogle Scholar
  40. 40.
    Garcia S, Chinikar S, Coudrier D, Billecocq A, Hooshmand B, Crance JM, Garin D, Bouloy M (2006) Evaluation of a Crimean-Congo hemorrhagic fever virus recombinant antigen expressed by Semliki Forest suicide virus for IgM and IgG antibody detection in human and animal sera collected in Iran. J Clin Virol 32:154–159.CrossRefGoogle Scholar
  41. 41.
    Gonzalez JP, Wilson ML, Cornet JP, Camicas JL (1995) Host-passage-induced phenotypic changes in Crimean-Congo haemorrhagic fever virus. Res Virol 146:131–140.PubMedCrossRefGoogle Scholar
  42. 42.
    Gonzalez JP, Camicas JL, Cornet JP, Wilson ML (1998) Biological and clinical responses of West African sheep to Crimean-Congo haemorrhagic fever virus experimental infection. Res Virol 149:445–455.PubMedCrossRefGoogle Scholar
  43. 43.
    Graci JD, Cameron CE (2006) Mechanisms of action of ribavirin against distinct viruses. Rev Med Virol 16:37–48.PubMedCrossRefGoogle Scholar
  44. 44.
    Gresser I (1997) Wherefore interferon? J Leukoc Biol 61:567–574.PubMedGoogle Scholar
  45. 45.
    Griffin DE (2003) Immune responses to RNA-virus infections of the CNS. Nat Rev Immunol 3:493–502.PubMedCrossRefGoogle Scholar
  46. 46.
    Haferkamp S, Fernando L, Schwarz TF, Feldmann H, Flick R (2005) Intracellular localization of Crimean-Congo Hemorrhagic Fever (CCHF) virus glycoproteins. Virol J 2:42.PubMedCrossRefGoogle Scholar
  47. 47.
    Haller O, Frese M, Kochs G (1998) Mx proteins: mediators of innate resistance to RNA viruses. Rev Sci Tech 17:220–230.PubMedGoogle Scholar
  48. 48.
    Haller O, Kochs G, Weber F (2006) The interferon response circuit: Induction and suppression by pathogenic viruses. Virology 344:119–130.PubMedCrossRefGoogle Scholar
  49. 49.
    Hayden FG (2006) Antiviral Agents. In: Brunton LL, Lazo JS, Parker KL (eds) Goodman and Gilman's: The Pharmacological Basis of Therapeutics. Mc Graw Hill, New York, pp 1265–1267.Google Scholar
  50. 50.
    Heagy W, Crumpacker C, Lopez PA, Finberg RW (1991) Inhibition of immune functions by antiviral drugs. J Clin Invest 87:1916–1924.PubMedCrossRefGoogle Scholar
  51. 51.
    Hoogstraal H (1979) The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol 15:307–417.PubMedGoogle Scholar
  52. 52.
    Horisberger MA (1995) Interferons, Mx genes, and resistance to influenza virus. Am J Respir Crit Care Med 152:S67–71.PubMedGoogle Scholar
  53. 53.
    Huggins JW (1989) Prospects for treatment of viral hemorrhagic fevers with ribavirin, a broad-spectrum antiviral drug. Rev Infect Dis 11 (Suppl 4):S750–761.PubMedGoogle Scholar
  54. 54.
    Huggins JW, Hsiang CM, Cosgriff TM, Guang MY, Smith JI, Wu ZO, LeDuc JW, Zheng ZM, Meegan JM, Wang QN, et al. (1991) Prospective, double-blind, concurrent, placebo-controlled clinical trial of intravenous ribavirin therapy of hemorrhagic fever with renal syndrome. J Infect Dis 164:1119–1127.PubMedGoogle Scholar
  55. 55.
    Hui DJ, Bhasker CR, Merrick WC, Sen GC (2003) Viral stress-inducible protein p56 inhibits translation by blocking the interaction of eIF3 with the ternary complex eIF2.GTP.Met-tRNAi. J Biol Chem 278:39477–39482.PubMedCrossRefGoogle Scholar
  56. 56.
    Hui DJ, Terenzi F, Merrick WC, Sen GC (2005) Mouse p56 blocks a distinct function of eukaryotic initiation factor 3 in translation initiation. J Biol Chem 280:3433–3440.PubMedCrossRefGoogle Scholar
  57. 57.
    Hultgren C, Milich DR, Weiland O, Sallberg M (1998) The antiviral compound ribavirin modulates the T helper (Th) 1/Th2 subset balance in hepatitis B and C virus-specific immune responses. J Gen Virol 79 (Pt 10):2381–2391.PubMedGoogle Scholar
  58. 58.
    Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147:258–267.CrossRefGoogle Scholar
  59. 59.
    Isaacs A, Lindenmann J, Valentine RC (1957) Virus interference. II. Some properties of interferon. Proc R Soc Lond B Biol Sci 147:268–273.CrossRefGoogle Scholar
  60. 60.
    Jabbari A, Besharat S, Abbasi A, Moradi A, Kalavi K (2006) Crimean-Congo hemorrhagic fever: case series from a medical center in Golestan province, Northeast of Iran (2004). Indian J Med Sci 60:327–329.PubMedCrossRefGoogle Scholar
  61. 61.
    Janeway CA, Jr., Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216.PubMedCrossRefGoogle Scholar
  62. 62.
    Kinsella E, Martin SG, Grolla A, Czub M, Feldmann H, Flick R (2004) Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment. Virology 321:23–28.PubMedCrossRefGoogle Scholar
  63. 63.
    Knowles SR, Phillips EJ, Dresser L, Matukas L (2003) Common adverse events associated with the use of ribavirin for severe acute respiratory syndrome in Canada. Clin Infect Dis 37:1139–1142.PubMedCrossRefGoogle Scholar
  64. 64.
    Kochs G, Janzen C, Hohenberg H, Haller O (2002) Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc Natl Acad Sci USA 99:3153–3158.PubMedCrossRefGoogle Scholar
  65. 65.
    Leroy M, Pire G, Baise E, Desmecht D (2005) Expression of the interferon-alpha/beta-inducible bovine Mx1 dynamin interferes with replication of rabies virus. Neurobiol Dis 21:515–521.PubMedCrossRefGoogle Scholar
  66. 66.
    Mangia A, Santoro R, Minerva N, Ricci GL, Carretta V, Persico M, Vinelli F, Scotto G, Bacca D, Annese M, Romano M, Zechini F, Sogari F, Spirito F, Andriulli A (2005) Peginterferon alfa-2b and ribavirin for 12 vs. 24 weeks in HCV genotype 2 or 3. N Engl J Med 352:2609–2617.PubMedCrossRefGoogle Scholar
  67. 67.
    Mardani M, Jahromi MK, Naieni KH, Zeinali M (2003) The efficacy of oral ribavirin in the treatment of Crimean-Congo hemorrhagic fever in Iran. Clin Infect Dis 36:1613–1618.PubMedCrossRefGoogle Scholar
  68. 68.
    Marquez VE, Lim MI, Treanor SP, Plowman J, Priest MA, Markovac A, Khan MS, Kaskar B, Driscoll JS (1988) Cyclopentenylcytosine. A carbocyclic nucleoside with antitumor and antiviral properties. J Med Chem 31:1687–1694.Google Scholar
  69. 69.
    Mazza JJ (2002) Manual of Clinical Hematology. Lippincott Williams & Wilkins, Philadelphia.Google Scholar
  70. 70.
    McCormick JB, King IJ, Webb PA, Scribner CL, Craven RB, Johnson KM, Elliott LH, Belmont-Williams R (1986) Lassa fever. Effective therapy with ribavirin. N Engl J Med 314:20–26.Google Scholar
  71. 71.
    Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17:138–146.PubMedCrossRefGoogle Scholar
  72. 72.
    Moulard M, Phogat SK, Shu Y, Labrijn AF, Xiao X, Binley JM, Zhang MY, Sidorov IA, Broder CC, Robinson J, Parren PW, Burton DR, Dimitrov DS (2002) Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120-CD4-CCR5 complexes. Proc Natl Acad Sci USA 99:6913–6918.PubMedCrossRefGoogle Scholar
  73. 73.
    Nabeth P, Cheikh DO, Lo B, Faye O, Vall IO, Niang M, Wague B, Diop D, Diallo M, Diallo B, Diop OM, Simon F (2004) Crimean-Congo hemorrhagic fever, Mauritania. Emerg Infect Dis 10:2143–2149.PubMedGoogle Scholar
  74. 74.
    Ozkurt Z, Kiki I, Erol S, Erdem F, Yilmaz N, Parlak M, Gundogdu M, Tasyaran MA (2006) Crimean-Congo hemorrhagic fever in Eastern Turkey: clinical features, risk factors and efficacy of ribavirin therapy. J Infect 52:207–215.PubMedCrossRefGoogle Scholar
  75. 75.
    Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31:169–217.PubMedCrossRefGoogle Scholar
  76. 76.
    Page T, Connor JD (1990) The metabolism of ribavirin in erythrocytes and nucleated cells. Int J Biochem 22:379–383.PubMedCrossRefGoogle Scholar
  77. 77.
    Papa A, Bino S, Llagami A, Brahimaj B, Papadimitriou E, Pavlidou V, Velo E, Cahani G, Hajdini M, Pilaca A, Harxhi A, Antoniadis A (2002) Crimean-Congo hemorrhagic fever in Albania, 2001. Eur J Clin Microbiol Infect Dis 21:603–606.PubMedCrossRefGoogle Scholar
  78. 78.
    Papa A, Bozovi B, Pavlidou V, Papadimitriou E, Pelemis M, Antoniadis A (2002) Genetic detection and isolation of Crimean-Congo hemorrhagic fever virus, Kosovo, Yugoslavia. Emerg Infect Dis 8:852–854.PubMedCrossRefGoogle Scholar
  79. 79.
    Perrota PL, Pisciotto PT, Snyder EL (2003) Platelets and Related Products. In: Hillyer CD, Silberstein LE, Ness PM, Anderson KC, Roush KS (eds) Blood Banking and Transfusion Medicine. Churchill Livingstone, Philadelphia, pp 181–205.Google Scholar
  80. 80.
    Regad T, Chelbi-Alix MK (2001) Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 20:7274–7286.PubMedCrossRefGoogle Scholar
  81. 81.
    Reichelt M, Stertz S, Krijnse-Locker J, Haller O, Kochs G (2004) Missorting of LaCrosse virus nucleocapsid protein by the interferon-induced MxA GTPase involves smooth ER membranes. Traffic 5:772–784.PubMedCrossRefGoogle Scholar
  82. 82.
    Rubinstein M, Dinarello CA, Oppenheim JJ, Hertzog P (1998) Recent advances in cytokines, cytokine receptors and signal transduction. Cytokine Growth Factor Rev 9:175–181.PubMedCrossRefGoogle Scholar
  83. 83.
    Samuel CE (2001) Antiviral actions of interferons. Clin Microbiol Rev 14:778–809.PubMedCrossRefGoogle Scholar
  84. 84.
    Sanchez AJ, Vincent MJ, Nichol ST (2002) Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J Virol 76:7263–7275.PubMedCrossRefGoogle Scholar
  85. 85.
    Sanchez AJ, Vincent MJ, Erickson BR, Nichol ST (2006) Crimean-Congo hemorrhagic fever virus glycoprotein precursor is cleaved by Furin-like and SKI–1 proteases to generate a novel 38–kilodalton glycoprotein. J Virol 80:514–525.PubMedCrossRefGoogle Scholar
  86. 86.
    Sasaki N, Matsui A, Momoi M, Tsuda F, Okamoto H (1997) Loss of circulating hepatitis C virus in children who developed a persistent carrier state after mother-to-baby transmission. Pediatr Res 42:263–267.PubMedCrossRefGoogle Scholar
  87. 87.
    Sen GC (2001) Viruses and interferons. Annu Rev Microbiol 55:255–281.PubMedCrossRefGoogle Scholar
  88. 88.
    Shepherd AJ, Swanepoel R, Leman PA (1989) Antibody response in Crimean-Congo hemorrhagic fever. Rev Infect Dis 11 (Suppl 4):S801–806.PubMedGoogle Scholar
  89. 89.
    Sidwell RW, Huffman JH, Khare GP, Allen LB, Witkowski JT, Robins RK (1972) Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1, 2, 4-triazole-3-carboxamide. Science 177:705–706.PubMedCrossRefGoogle Scholar
  90. 90.
    Sidwell RW, Huffman JH, Smee DF, Gilbert J, Gessaman A, Pease A, Warren RP, Huggins J, Kende M (1992) Potential role of immunomodulators for treatment of phlebovirus infections of animals. Ann N Y Acad Sci 653:344–355.PubMedCrossRefGoogle Scholar
  91. 91.
    Sidwell RW, Huffman JH, Barnard DL, Smee DF, Warren RP, Chirigos MA, Kende M, Huggins J (1994) Antiviral and immunomodulating inhibitors of experimentally-induced Punta Toro virus infections. Antiviral Res 25:105–122.PubMedCrossRefGoogle Scholar
  92. 92.
    Sidwell RW, Smee DF (2003) Viruses of the Buny-and Togaviridae families: potential as bioterrorism agents and means of control. Antiviral Res 57:101–111.PubMedCrossRefGoogle Scholar
  93. 93.
    Silverman RH (1994) Fascination with 2–5A-dependent RNase: a unique enzyme that functions in interferon action. J Interferon Res 14:101–104.PubMedGoogle Scholar
  94. 94.
    Suleiman MN, Muscat-Baron JM, Harries JR, Satti AG, Platt GS, Bowen ET, Simpson DI (1980) Congo/Crimean haemorrhagic fever in Dubai. An outbreak at the Rashid Hospital. Lancet 2:939–941.Google Scholar
  95. 95.
    Swanepoel R, Gill DE, Shepherd AJ, Leman PA, Mynhardt JH, Harvey S (1989) The clinical pathology of Crimean-Congo hemorrhagic fever. Rev Infect Dis 11(Suppl 4):S794–800.PubMedGoogle Scholar
  96. 96.
    Sweeney MJ, Gerzon K, Harris PN, Holmes RE, Poore GA, Williams RH (1972) Experimental antitumor activity and preclinical toxicology of mycophenolic acid. Cancer Res 32:1795–1802.PubMedGoogle Scholar
  97. 97.
    Tam RC, Lau JY, Hong Z (2001) Mechanisms of action of ribavirin in antiviral therapies. Antivir Chem Chemother 12:261–272.PubMedGoogle Scholar
  98. 98.
    Tatar A, Ozkurt Z, Kiki I (2005) Genotoxic effect of ribavirin in patients with Crimean-Congo hemorrhagic fever. Jpn J Infect Dis 58:313–315.PubMedGoogle Scholar
  99. 99.
    Tignor GH, Hanham CA (1993) Ribavirin efficacy in an in vivo model of Crimean-Congo hemorrhagic fever virus (CCHF) infection. Antiviral Res 22:309–325.PubMedCrossRefGoogle Scholar
  100. 100.
    Tosi MF (2005) Innate immune responses to infection. J Allergy Clin Immunol 116:241–249; quiz 250.PubMedCrossRefGoogle Scholar
  101. 101.
    Vandenbroucke JP (2004) When are observational studies as credible as randomised trials? Lancet 363:1728–1731.PubMedCrossRefGoogle Scholar
  102. 102.
    Vassilenko SM, Vassilev TL, Bozadjiev LG, Bineva IL, Kazarov GZ (1990) Specific intravenous immunoglobulin for Crimean-Congo haemorrhagic fever. Lancet 335:791–792.PubMedCrossRefGoogle Scholar
  103. 103.
    Vincent MJ, Sanchez AJ, Erickson BR, Basak A, Chretien M, Seidah NG, Nichol ST (2003) Crimean-Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1. J Virol 77:8640–8649.PubMedCrossRefGoogle Scholar
  104. 104.
    Watts DM, Ussery MA, Nash D, Peters CJ (1989) Inhibition of Crimean-Congo hemorrhagic fever viral infectivity yields in vitro by ribavirin. Am J Trop Med Hyg 41:581–585.PubMedGoogle Scholar
  105. 105.
    Williams BR (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18:6112–6120.PubMedCrossRefGoogle Scholar
  106. 106.
    Wilson ML, Gonzalez JP, Cornet JP, Camicas JL (1991) Transmission of Crimean-Congo haemorrhagic fever virus from experimentally infected sheep to Hyalomma truncatum ticks. Res Virol 142:395–404.PubMedCrossRefGoogle Scholar
  107. 107.
    Young KC, Lindsay KL, Lee KJ, Liu WC, He JW, Milstein SL, Lai MM (2003) Identification of a ribavirin-resistant NS5B mutation of hepatitis C virus during ribavirin monotherapy. Hepatol (Baltimore, MD) 38:869–878.Google Scholar
  108. 108.
    Zeerleder S, Hack CE, Wuillemin WA (2005) Disseminated intravascular coagulation in sepsis. Chest 128:2864–2875.PubMedCrossRefGoogle Scholar
  109. 109.
    Zhang MY, Shu Y, Phogat S, Xiao X, Cham F, Bouma P, Choudhary A, Feng YR, Sanz I, Rybak S, Broder CC, Quinnan GV, Evans T, Dimitrov DS (2003) Broadly cross-reactive HIV neutralizing human monoclonal antibody Fab selected by sequential antigen panning of a phage display library. J Immunol Methods 283:17–25.PubMedCrossRefGoogle Scholar
  110. 110.
    Zhang MY, Shu Y, Rudolph D, Prabakaran P, Labrijn AF, Zwick MB, Lal RB, Dimitrov DS (2004) Improved breadth and potency of an HIV-1-neutralizing human single-chain antibody by random mutagenesis and sequential antigen panning. J Mol Biol 335:209–219.PubMedCrossRefGoogle Scholar
  111. 111.
    Zhang MY, Shu Y, Sidorov I, Dimitrov DS (2004) Identification of a novel CD4i human monoclonal antibody Fab that neutralizes HIV–1 primary isolates from different clades. Antiviral Res 61:161–164.PubMedCrossRefGoogle Scholar
  112. 112.
    Zhang MY, Xiao X, Sidorov IA, Choudhry V, Cham F, Zhang PF, Bouma P, Zwick M, Choudhary A, Montefiori DC, Broder CC, Burton DR, Quinnan GV, Jr., Dimitrov DS (2004) Identification and characterization of a new cross-reactive human immunodeficiency virus type 1–neutralizing human monoclonal antibody. J Virol 78:9233–9242.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Onder Ergonul
    • 1
  • Ali Mirazimi
    • 2
  • Dimiter S. Dimitrov
    • 3
  1. 1.Infectious Diseases and Clinical Microbiology DepartmentMarmara University, School of MedicineTurkey
  2. 2.Center for Microbiological PreparednessSwedish Institute for Infectious Disease ControlSweden
  3. 3.Center for Cancer ResearchProtein Interactions Group, CCR Nanobiology ProgramFrederickUSA

Personalised recommendations